Vol. 52
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-03-05
A Dual-Frequency Matching Network for FDCLs Using Dual-Band λ/4-Lines
By
Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015
Abstract
A new approach to design a dual-band matching network using a dual-band quarter-wave line is presented. The proposed matching network is capable of simultaneously matching frequency-dependent complex loads (FDCLs) having different values at two arbitrary frequencies to a real source impedance, Z0. A very simple step-wise design procedure is discussed for the transformer along with closed-form design equations which are very simple in nature. For experimental verification, two PCB prototypes have been fabricated using FR-4 material, operating at 1 GHz and 2.42 GHz. The measurements results matches well with that obtained from simulation, exhibiting good performance.
Citation
Mohammad A. Maktoomi, Mohammad S. Hashmi, and Vipul Panwar, "A Dual-Frequency Matching Network for FDCLs Using Dual-Band λ/4-Lines," Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015.
doi:10.2528/PIERL15020405
References

1. Pozar, D. M., Microwave Engineering, 3rd Edition, J. Wiley & Sons, New Delhi, 2010.

2. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1157-1161, Apr. 2003.
doi:10.1109/TMTT.2003.809675

3. Sophocles, J. and A. Orfanidis, "Two-section dual-band Chebyshev impedance transformer," IEEE Microw. Wireless Comp. Lett., Vol. 13, No. 9, 382-384, Sep. 2003.
doi:10.1109/LMWC.2003.817135

4. Park, M. J. and B. Lee, "Dual band design of single stub impedance matching networks with application to dual band stubbed T junctions," Wiley Microwave & Optical Technology Letters, Vol. 52, No. 6, 1359-1362, 2010.
doi:10.1002/mop.25201

5. Maktoomi, M. A. and M. S. Hashmi, "A coupled-line based L-section DC-isolated dual-band real to real impedance transformer and its application to a dual-band T-junction power divider," Progress In Electromagnetics Research C, Vol. 55, 95-104, 2014.
doi:10.2528/PIERC14110502

6. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency dependent complex load impedance," IEEE Microw. Wireless Comp. Lett., Vol. 19, No. 10, 611-613, Oct. 2009.

7. Chuang, M.-L., "Dual-band impedance transformer using two-section shunt stubs," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1257-1263, May 2010.
doi:10.1109/TMTT.2010.2045560

8. Chuang, M.-L., "Analytical design of dual-band impedance transformer with additional transmission zero," IET Microwaves, Antennas & Propagation, Vol. 9, No. 13, 1120-1126, Oct. 2014.

9. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "A T-section dual-band matching network for frequency-dependent complex loads incorporating coupled line with DC-block property suitable for dual-band transistor amplifiers," Progress In Electromagnetics Research C, Vol. 54, 75-84, 2014.
doi:10.2528/PIERC14090403

10. Cheng, K.-K. M. and F.-L. Wong, "A new Wilkinson power divider design for dual band application," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 9, 664-666, Sep. 2007.
doi:10.1109/LMWC.2007.903454

11. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Dual-band RF circuits and components for multi-standard software defined radios," IEEE Circuits & Systems Magazine, Vol. 12, No. 1, 12-32, First Quater 2012.
doi:10.1109/MCAS.2011.2181074