Vol. 56
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-31
A Dumbbell-Shaped Dual-Band Metamaterial Antenna Using FDTD Technique
By
Progress In Electromagnetics Research Letters, Vol. 56, 25-30, 2015
Abstract
In this study, a dumbbell-shaped metamaterial (MTM) antenna has been proposed for dual-band applications using finite difference time domain (FDTD) technique. Such a composite MTM antenna consists of dumbbell-shaped patch, microstrip and partial ground plane. The proposed antenna shows dual-band behavior having impedance bandwidths (|S11| < -10 dB) of 28.5% and 8.7% at 1.72 GHz and 3 GHz respectively. It has been designed to operate at various cellular standards such as GPS, GSM1800 and WCDMA. Design and analysis have been carried out using FDTD code based on uniform meshing and convolutional perfectly matched layer (CPML) absorbing boundary conditions. Further, simulation results have been verified using HFSS, and a prototype has been fabricated to validate the results experimentally. The overall electrical size of the proposed antenna is 0.287λo × 0.346λo × 0.009λo. The proposed dual-band antenna offers excellent radiation characteristics with a gain of 1.2 dBi and 1.5 dBi at 1.72 GHz and 3 GHz respectively with omnidirectional radiation patterns in xz-plane.
Citation
Sameer Kumar Sharma Devvrat Gupta Jai Deep Mulchandani Raghvendra Kumar Chaudhary , "A Dumbbell-Shaped Dual-Band Metamaterial Antenna Using FDTD Technique," Progress In Electromagnetics Research Letters, Vol. 56, 25-30, 2015.
doi:10.2528/PIERL15070106
http://www.jpier.org/PIERL/pier.php?paper=15070106
References

1. Wong, K. L. and H. B. Hsieh, "Dual-frequency circular microstrip antenna with a pair of arc-shaped slots," Microw. Opt. Technology Lett., Vol. 19, 410-412, 1998.
doi:10.1002/(SICI)1098-2760(19981220)19:6<410::AID-MOP9>3.0.CO;2-M

2. Waterhouse, R. B., S. D. Targonski, and D. M. Kokotoff, "Design and performance of small printed antennas," IEEE Trans. Antenna Propag., Vol. 46, 1629-1633, 1998.
doi:10.1109/8.736612

3. Waterhouse, R. B., Printed Antennas for Wireless Communication, Wiley-IEEE Press, New York, 2007.
doi:10.1002/9780470512241

4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
doi:10.1002/0471754323

5. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microw. Opt. Technology Lett., Vol. 57, 1444-1447, 2015.
doi:10.1002/mop.29113

6. Niu, B. J. and Q. Fang, "Bandwidth enhancement of CPW-fed antenna based on epsilon negativezeroth and first-order resonators," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952

7. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Compact CPW-fed CHSSR antenna for WLAN," IEEE MTT Int. Microw. and RF Conference (IMaRC), 114-117, Bangalore, India, 2014.

8. Kim, T. G. and B. Lee, "Metamaterial based compact zeroth order resonant antenna," Electronics Lett., Vol. 45, 12-13, 2009.
doi:10.1049/el:20092715

9. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Trans. Antennas and Propag., Vol. 60, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114

10. Gupta, A., S. K. Sharma, and R. K. Chaudhary, "A compact dual-mode metamaterial-inspired antenna using rectangular-type CSRR," Progress In Electromagnetics Research C, Vol. 57, 35-42, 2015.
doi:10.2528/PIERC15032304

11. Hwang, S. H., T. S. Yang, J. H. Byun, and A. S. Kim, "Design and analysis of metamaterial antenna for mobile handset application," 3rd European Conference on Antennas and Propag., 3563-3566, Berlin, Germany, 2009.

12. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth order resonating antenna," IEEE Trans. Antennas and Propag., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

13. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas and Propag., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

14. Elsherbeni, A. Z. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations, SciTech Pub., Norwood, MA, 2009.

15. Majedi, M. S. and A. R. Attari, "A compact and broadband metamaterial-inspired antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 345-348, 2013.
doi:10.1109/LAWP.2013.2248072