Vol. 56
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-09-25
Extrapolation of Transient Electromagnetic Response Using Approximate Prolate Series
By
Progress In Electromagnetics Research Letters, Vol. 56, 101-106, 2015
Abstract
A novel technique for extrapolation of transient response using early-time and low-frequency data is proposed in this paper. An improved extrapolation scheme using approximate prolate series is presented to obtain a transient electromagnetic response. The approximate prolate series, which has an approximately band-limited and sub-domain nature, is a better choice for extrapolating the time-domain electromagnetic response than orthogonal polynomials, such as Laguerre functions and Hermite functions. A novel regularization method based on truncated generalized SVD is also proposed to solve the ill-posed extrapolation problems, which make the extrapolation technique much less sensitive to noise in the known part of the response. Some numerical results are presented to illustrate the effectiveness and accuracy of the proposed method in extrapolation of transient electromagnetic problems.
Citation
Ming-Da Zhu, "Extrapolation of Transient Electromagnetic Response Using Approximate Prolate Series," Progress In Electromagnetics Research Letters, Vol. 56, 101-106, 2015.
doi:10.2528/PIERL15072304
References

1. Rao, M. M., T. K. Sarkar, T. Anjali, and R. S. Adve, "Simultaneous extrapolation in time and frequency domains using Hermite expansions," IEEE Trans. Antennas Propag., Vol. 47, 1108-1115, Jun. 1999.
doi:10.1109/8.777138

2. Rao, M. M., T. K. Sarkar, R. S. Adve, T. Anjali, and J. F. Callejon, "Extrapolation of electromagnetic responses from conducting objectsin time and frequency domains," IEEE Trans. Microw. Theory Tech., Vol. 47, 1964-1974, Oct. 1999.
doi:10.1109/22.795070

3. Sarkar, T. K. and J. Koh, "Generation of a wide-band electromagnetic response through a Laguerre expansion using early-time and low- frequency data," IEEE Trans. Microw. Theory Tech., Vol. 50, 1408-1416, May 2002.
doi:10.1109/22.999156

4. Yuan, M., J. Koh, T. K. Sarkar, W. Lee, and M. Salazar-Palma, "A comparison of performance of three orthogonal polynomials in extraction of wide-band response using early time and low frequency data," IEEE Trans. Antennas Propag., Vol. 53, 785-792, Feb. 2005.
doi:10.1109/TAP.2004.841330

5. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 2552-2563, Jun. 2006.

6. Frye, J. M. and A. Q. Martin, "Extrapolation of time and frequency responses of resonant antennas using damped sinusoids and orthogonal polynomials," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 933-943, Apr. 2008.
doi:10.1109/TAP.2008.919195

7. Frye, J. M. and A. Q. Martin, "Time and frequency bias in extrapolating wideband responses of resonant structures," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3934-3941, Dec. 2009.
doi:10.1109/TAP.2009.2033285

8. Zhao, H. and Y. Zhang, "Extrapolation of wideband electromagnetic response using sparse representation," representation, Vol. 60, No. 2, 1026-1034, Feb. 2012.

9. Hansen, P. C., "Regularization, GSVD and truncated GSVD," BIT, Vol. 29, No. 3, 491-504, Sep. 1989.
doi:10.1007/BF02219234

10. Knab, J. J., "Interpolation of band-limited functions using the approximate prolate series," IEEE Trans. Inform. Theory, Vol. 25, 717-720, 1979.
doi:10.1109/TIT.1979.1056115

11. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, Winston & Sons, Washington, D.C., 1977.

12. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, Dec. 1992.
doi:10.1137/1034115