Vol. 57
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-10-19
A Circularly Polarized Antenna Array with a Convenient Bandwidth/Size Ratio Based on Non-Identical Disc Elements
By
Progress In Electromagnetics Research Letters, Vol. 57, 47-54, 2015
Abstract
This paper presents design and development of a Circularly Polarized microstrip antenna array for C-band application. The proposed antenna exhibits convenient trade-off between bandwidth and dimension. The array design is based on the Sequential Phase Arrangement (SPA) of 2×2 non-identical disc based patch elements, operating in modal degeneration. Exploiting the properties of the SPA, capable to force CP even operating on linear polarized elements, each disc is independently detuned to operate on non perfectly overlapped bandwidth. When properly fed by a Sequential Phase Network (SPN), the set of four discs seamlessly covers the wide cumulative bandwidth which is the combination of the four sub-channels. To verify the design, a single-layer via-less array is fabricated in a compact printed square board of side 40 mm, meaning a surface of 0.64λ20 at the center frequency of 6.0 GHz, assembling the elements with a compact space-filling SPN. The measurements show a wide 10 dB return loss bandwidth of 28.5%, a 3 dB Axial Ratio (AR) bandwidth exceeding 1 GHz, and a realized gain ranging from 4.1 dB to 7.25 dB inside the AR bandwidth. The global bandwidth of the proposed array, almost coincident with the AR bandwidth, is 17.0%.
Citation
Stefano Maddio, "A Circularly Polarized Antenna Array with a Convenient Bandwidth/Size Ratio Based on Non-Identical Disc Elements," Progress In Electromagnetics Research Letters, Vol. 57, 47-54, 2015.
doi:10.2528/PIERL15081703
References

1. Garg, R., Microstrip Antenna Design Handbook, Artech House, 2001.

2. Hall, P., J. Huang, E. Rammos, and A. Roederer, "Gain of circularly polarised arrays composed of linearly polarised elements," Electronics Letters, Vol. 25, No. 2, 124-125, 1989.
doi:10.1049/el:19890091

3. Maddio, S., A. Cidronali, and G. Manes, "A new design method for single-feed circular polarization microstrip antenna with an arbitrary impedance matching condition," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 379-389, 2011.
doi:10.1109/TAP.2010.2096177

4. Maddio, S., A. Cidronali, I. Magrini, and G. Manes, "A design method for single-feed wideband microstrip patch antenna for switchable circular polarization," IEEE European Microwave Conference, 262-265, 2007.

5. Maddio, S., "A compact wideband circularly polarized antenna array for C-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1081-1084, 2015.
doi:10.1109/LAWP.2015.2392387

6. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, IET, 1989.

7. Maddio, S., A. Cidronali, and G. Manes, "An azimuth of arrival detector based on a compact complementary antenna system," 2010 European Wireless Technology Conference, 249-252, 2010.

8. Evans, H., P. Gale, B. Aljibouri, E. G. Lim, E. Korolkwiwicz, and A. Sambell, "Application of simulated annealing to design of serial feed sequentially rotated 2 × 2 antenna array," IET Electronics Letters, Vol. 36, No. 24, 1987-1988, 2000.
doi:10.1049/el:20001407

9. Aljibouri, B., A. Sambell, and B. S. Sharif, "Application of genetic algorithm to design of sequentially rotated circularly polarised dual-feed microstrip patch antenna array," IET Electronics Letters, Vol. 44, No. 12, 708-709, 2000.
doi:10.1049/el:20080947

10. Rafii, V., J. Nourinia, C. H. Ghobadi, J. Nourinia, and B. S. Virdee, "Broadband circularly polarized slot antenna array using sequentially rotated technique for-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 128-131, 2013.
doi:10.1109/LAWP.2013.2237744

11. Li, Y., Z. Zhang, and Z. Feng, "A sequential-phase feed using a circularly polarized shorted loop structure," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1443-1447, 2013.
doi:10.1109/TAP.2012.2227103

12. Yang, W., J. Zhou, Z. Yu, and L. Li, "Bandwidth and gain enhanced circularly polarized antenna array using sequential phase feed," IEEE Antennas and Wireless Propagation Letters, Vol. 13, No. 7, 1215-1218, 2014.
doi:10.1109/LAWP.2014.2332560