Vol. 59
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-04-27
Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations
By
Progress In Electromagnetics Research Letters, Vol. 59, 137-143, 2016
Abstract
Thermal hose is capable of transferring the thermal energy of a finite source to arbitrary long distance. This is achieved by using stretching transformation and can be ideally constructed by using a material with a highly anisotropic thermal conductivity. For practical realization, such a thermal hose can be made of homogeneous conductors in bilayer configurations, employing only copper and expanded polystyrene. It is shown that the thermal energy can be well confined and almost perfectly transferred in an arbitrarily bending hose, demonstrating excellent flexibility. More interestingly is that, when a point heat source is placed at the opening of a split-ring-shaped hose, the temperature of the inner region becomes uniform and reaches nearly as high as the heat source. These novel properties of the proposed flexible thermal hose have been numerically validated in time-dependent case, showing excellent transfer and configuration of thermal energy.
Citation
Tiancheng Han, and Yuhang Gao, "Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations," Progress In Electromagnetics Research Letters, Vol. 59, 137-143, 2016.
doi:10.2528/PIERL16010504
References

1. Onnes, H. K., "On the sudden change in the rate at the resistance of mercury disappears," Phys. Lab. Univ. Leiden, 120b-122b, 1911.

2. Hassenzahl, W. V., D.W. Hazelton, B. K. Johnson, P. Komarek, M. Noe, and C. T. Reis, "Electric power applications of superconductivity," Proceedings of the IEEE, Vol. 92, 1655-1674, 2004.
doi:10.1109/JPROC.2004.833674

3. Stewart, G. R., "Superconductivity in iron compounds," Rev. Mod. Phys., Vol. 83, 1589-1652, 2011.
doi:10.1103/RevModPhys.83.1589

4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

6. Ma, H. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, 2010.

7. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337-339, 2010.
doi:10.1126/science.1186351

8. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater., Vol. 12, 25-28, 2013.
doi:10.1038/nmat3476

9. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

10. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Phys. Rev. Lett., Vol. 102, 183903, 2009.
doi:10.1103/PhysRevLett.102.183903

11. Chen, H. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Appl. Phys. Lett., Vol. 91, 183518, 2007.
doi:10.1063/1.2803315

12. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, 024301, 2011.
doi:10.1103/PhysRevLett.106.024301

13. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Isotropic transformation optics: approximate acoustic and quantum cloaking," New J. Phys., Vol. 10, 115024, 2008.
doi:10.1088/1367-2630/10/11/115024

14. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.
doi:10.1103/PhysRevLett.100.123002

15. Brun, M., S. Guenneau, and A. B. Movchan, "Achieving control of in-plane elastic waves," Appl. Phys. Lett., Vol. 94, 061903, 2009.
doi:10.1063/1.3068491

16. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, 1466-1468, 2012.
doi:10.1126/science.1218316

17. Narayana, S. and Y. Sato, "DC magnetic cloak," Adv. Mater., Vol. 24, 71-74, 2012.
doi:10.1002/adma.201104012

18. Yang, F., Z. Mei, T. Jin, and T. J. Cui, "dc electric invisibility cloak," Phys. Rev. Lett., Vol. 109, 053902, 2012.
doi:10.1103/PhysRevLett.109.053902

19. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, 248, 2006.
doi:10.1088/1367-2630/8/10/248

20. Fan, C., Y. Gao, and J. Huang, "Shaped graded materials with an apparent negative thermal conductivity," Appl. Phys. Lett., Vol. 92, 251907, 2008.
doi:10.1063/1.2951600

21. Chen, T., C. N. Weng, and J. S. Chen, "Cloak for curvilinearly anisotropic media in conduction," Appl. Phys. Lett., Vol. 93, 114103, 2008.
doi:10.1063/1.2988181

22. Li, J., Y. Gao, and J. Huang, "A bifunctional cloak using transformation media," J. Appl. Phys., Vol. 108, 074504, 2010.
doi:10.1063/1.3490226

23. Guenneau, S., C. Amra, and D. Veynante, "Transformation thermodynamics: Cloaking and concentrating heat flux," Opt. Express, Vol. 20, 8207-8218, 2012.
doi:10.1364/OE.20.008207

24. Schittny, R., M. Kadic, S. Guenneau, and M. Wegener, "Experiments on transformation thermodynamics: Molding the flow of heat," Phys. Rev. Lett., Vol. 110, 195901, 2013.
doi:10.1103/PhysRevLett.110.195901

25. Ma, Y., L. Lan, W. Jiang, F. Sun, and S. He, "A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity," NPG Asia Materials, Vol. 5, e73, 2013.
doi:10.1038/am.2013.60

26. Han, T., T. Yuan, B. Li, and C.-W. Qiu, "Homogeneous thermal cloak with constant conductivity and tunable heat localization," Sci. Rep., Vol. 3, 1593, 2013.

27. Narayana, S. and Y. Sato, "Heat flux manipulation with engineered thermal materials," Phys. Rev. Lett., Vol. 108, 214303, 2012.
doi:10.1103/PhysRevLett.108.214303

28. Dede, E. M., T. Nomura, P. Schmalenberg, and J. S. Lee, "Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects," Appl. Phys. Lett., Vol. 103, 063501, 2013.
doi:10.1063/1.4816775

29. Han, T., X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, "Experimental demonstration of a bilayer thermal cloak," Phys. Rev. Lett., Vol. 112, 054302, 2014.
doi:10.1103/PhysRevLett.112.054302

30. Xu, H., X. Shi, F. Gao, H. Sun, and B. Zhang, "Ultrathin three-dimensional thermal cloak," Phys. Rev. Lett., Vol. 112, 054301, 2014.
doi:10.1103/PhysRevLett.112.054301

31. Nguyen, D. M., H. Xu, Y. Zhang, and B. Zhang, "Active thermal cloak," Appl. Phys. Lett., Vol. 107, 121901, 2015.
doi:10.1063/1.4930989

32. Han, T., X. Bai, D. Liu, D. Gao, B. Li, J. T. Thong, and C. W. Qiu, "Manipulating steady heat conduction by sensu-shaped thermal metamaterials," Sci. Rep., Vol. 5, 10242, 2015.
doi:10.1038/srep10242

33. Navau, C., J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez, "Long-distance transfer and routing of static magnetic fields," Phys. Rev. Lett., Vol. 112, 253901, 2014.
doi:10.1103/PhysRevLett.112.253901

34. Prat-Camps, J., C. Navau, and A. Sanchez, "A magnetic wormhole," Sci. Rep., Vol. 5, 12488, 2015.
doi:10.1038/srep12488

35. Qiu, C.-W., L. Hu, X. Xu, and Y. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Phys. Rev. E, Vol. 79, 047602, 2009.
doi:10.1103/PhysRevE.79.047602