Vol. 60
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-20
Microwave Characterization of Electrical Conductivity of Composite Conductors by Half-Wavelength Coplanar Resonator
By
Progress In Electromagnetics Research Letters, Vol. 60, 73-80, 2016
Abstract
The aim of this work is to characterize the electrical conductivity of composite conductors deposited on an alumina substrate. Several half-wavelength coplanar resonators are realized using several pure conductors, silver (Ag), copper (Cu), gold (Au) and tin (Sn), to compare their quality factors (Q0), related to losses, with those from analytical methods. In the literature, losses in coplanar components have been estimated by different analytical methods. We have put in evidence the relationship between electrical conductivity of the conductor and the resonator quality factor. An overall good agreement among quality factor values obtained by the analytical formulas, by numerical simulations and by microwave measurements is observed. The surface roughness is taken into account to better estimate real conductor losses. Therefore, these analytical formulas are used to extract the electrical conductivity values of the composite conductors (Ag-aC, AgSnIn and AgSn), from measured quality factors.
Citation
Bilal Benarabi, Faouzi Kahlouche, Bernard Bayard, Anthony Chavanne, and Jeremy Sautel, "Microwave Characterization of Electrical Conductivity of Composite Conductors by Half-Wavelength Coplanar Resonator," Progress In Electromagnetics Research Letters, Vol. 60, 73-80, 2016.
doi:10.2528/PIERL16030408
References

1. Hansen, R. C. and W. T. Pawlewicz, "Effective conductivity and microwave reflectivity of thin metallic films," IEEE Trans. Microwave Theory and Tech., Vol. 82, 2064-2066, Nov. 1982.

2. Maxwell, E., "Conductivity of metallic surfaces at microwave frequencies," Applied Physics, Vol. 18, No. 2, Jul. 1947.

3. Beilenho, K., et al. "Open and short circuits in coplanar MMIC’s," IEEE Trans. Microwave Theory and Tech., Vol. 41, No. 4, 1534-1537, Sep. 1993.
doi:10.1109/22.245673

4. Holloway, C. L. and E. F. Kuester, "A quasi-closed form expression for the conductor loss of CPW lines, with an investigation of edge shape edge effects," IEEE Trans. Microwave Theory and Tech., Vol. 43, No. 6, 2695-2701, Dec. 1995.
doi:10.1109/22.477846

5. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., 178-179, McGraw-Hill, New York, 1992.

6. Ghione, G. and C. U. Naldi, "A new analytical, cad-oriented model for the ohmic and radiation losses of asymmetric coplanar lines in hybrid and monolithic MIC’s," Gallium Arsenide Applications Symposium, GAAS, 1992, Noordwijk, Netherlands, Apr. 27-29, 1992.

7. Owyang, G. H. and T. Wu, "The approximate parameters of slot lines and their complement," IRE Transactions on Antennas and Propagation, Vol. 6, No. 1, 49-55, Jan. 2003.
doi:10.1109/TAP.1958.1144556

8. Holloway, C. L. and E. F. Kuester, "A quasi-closed form expression for the conductor loss of CPW lines, with an investigation of edge shape effects," IEEE Trans. Microwave Theory and Tech., Vol. 43, No. 12, 2695-2701, Dec. 1995.
doi:10.1109/22.477846

9. Frankel, Y., et al. "Terahertz attenuation and dispersion characteristics of coplanar transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 39, No. 1, Jun. 1991.

10. Belohoubek, E. and E. Denlinger, "Loss considerations for microstrip resonators," IEEE Trans. Microwave Theory and Tech., Vol. 23, No. 1, 522-526, Janvier, 2003.

11. Tsang, L., X. Gu, and H. Braunisch, "Effects of random rough surface on absorption by conductors at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 4, Apr. 2006.