Vol. 61
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-07-08
Bandwidth and Gain Enhancement for Probe-Fed CP Microstrip Antenna by Loading with Parasitical Patches
By
Progress In Electromagnetics Research Letters, Vol. 61, 47-53, 2016
Abstract
A novel probe-fed single-layer circularly polarized (CP) truncated microstrip antenna with enhanced CP bandwidth and gain is presented in this paper. The axial ratio (AR) bandwidth is broadened by loading with a circle of truncated square parasitical patches. Parameter analysis is made to investigate the effect of the loading structures on the AR property. For comparisons, both the unloaded and loaded truncated patch antennas with the same size are designed, fabricated and measured. The measurement results show that by adding the parasitical patches, the -10 dB impedance bandwidth was increased from 0.98 GHz (15.9%) to 1.42 GHz (21.5%), among which the 3-dB RHCP AR bandwidth has been increased from 200 MHz (3.3% at the center frequency of 6.04 GHz) to 780 MHz (12.6% at the center frequency of 6.19 GHz). The gain enhancement is about 0.5 dB~1.5 dB around the operating frequency range, and the maximum gain of the proposed antenna is about 9.1 dB. With the advantages of simple structure, wide CP bandwidth and considerable gain property, this antenna has potential application in wireless communications.
Citation
Wen-Quan Cao, and Wei Hong, "Bandwidth and Gain Enhancement for Probe-Fed CP Microstrip Antenna by Loading with Parasitical Patches," Progress In Electromagnetics Research Letters, Vol. 61, 47-53, 2016.
doi:10.2528/PIERL16031305
References

1. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peregrinus, Stevenage, UK, 1989.

2. Carver, K. R. and J. R. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981.
doi:10.1109/TAP.1981.1142523

3. Sharma, P. C. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 31, No. 6, 949-955, Nov. 1983.
doi:10.1109/TAP.1983.1143162

4. Tong, K. F. and T. P.Wong, "Circularly polarized U-slot antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2382-2385, Aug. 2007.
doi:10.1109/TAP.2007.901930

5. Khidre, A., K. F. Lee, F. Yang, and A. Eisherbeni, "Wideband circularly polarized E-shaped patch antenna for wireless applications," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 219-229, Oct. 2010.
doi:10.1109/MAP.2010.5687547

6. Nasimuddin, Z. N. Chen, and X. M. Qing, "Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3821-3828, Dec. 2010.
doi:10.1109/TAP.2010.2078476

7. Wang, C. and K. Chang, "Single-layer wideband probe-fed circularly polarized microstrip antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp. Dig., 1000-1003, Salt Lake City, UT, 2000.

8. Egashira, S. and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1533-1534, Nov. 1996.
doi:10.1109/8.542079

9. Herscovici, N., Z. Sipus, and D. Bonefacic, "Circularly polarized single fed wideband microstrip patch," IEEE Trans. Antennas Propag., Vol. 51, No. 6, 1277-1280, Jun. 2003.
doi:10.1109/TAP.2003.812241

10. Nasimuddin, K. P. Esselle, and A. K. Verma, "Wideband circularly polarized stacked microstrip antennas," IEEE Antennas and Wireless Propag. Lett., Vol. 6, 21-24, 2007.
doi:10.1109/LAWP.2006.890749

11. Lo, W. K., J. L. Hu, C. H. Chan, and K. M. Luk, "Circularly polarized patch antenna with an L-shaped probe fed by a microstrip line," Microw. Opt. Technol. Lett., Vol. 24, 412-414, 2000.
doi:10.1002/(SICI)1098-2760(20000320)24:6<412::AID-MOP15>3.0.CO;2-R

12. Nasimuddin, K. P. Esselle, and A. K. Verma, "Wideband high-gain circularly polarized stacked microstrip antennas with an optimized C-type feed and a short horn," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 578-581, Feb. 2008.
doi:10.1109/TAP.2007.915476

13. Cao, W. Q., B. N. Zhang, T. B. Yu, and H. B. Li, "A single-feed broadband circular polarized rectangular microstrip antenna with chip-resistor loading," IEEE Antennas and Wireless Propag. Lett., Vol. 9, 1065-1068, 2010.
doi:10.1109/LAWP.2010.2090859

14. Wong, K. L. and T. W. Chiou, "Broad-band single-patch circularly polarized microstrip antenna with dual capacitively coupled feeds," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 41-44, Jan. 2001.
doi:10.1109/8.910527

15. Karmakar, N. C. and M. E. Bialkowski, "Circularly polarized aperture coupled circular microstrip patch antennas for L-band applications," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 933-940, May 1999.
doi:10.1109/8.774159

16. Tang, X. H., Y. L. Long, H. Wong, K. L. Lau, and , "Broadband circularly-polarised patch antenna with 3D meandering strip feed," Electron. Lett., Vol. 47, No. 19, 1060-1062, 2011.
doi:10.1049/el.2010.3358

17. Lin, Q. W., H. Wong, X. Y. Zhang, and H. W. Lai, "Printed meandering probe-fed circularly polarized patch antenna with wide bandwidth," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 654-657, 2014.

18. Cao, W. Q. and W. Hong, "Bandwidth and gain enhancement for single-fed compact microstrip antenna by loading with parasitical patches," ICMMT2016, Beijing, 2016.

19. Luther, J. J., S. Ebadi, and X. Gong, "A microstrip patch electronically steerable parasitic array radiator (ESPAR) antenna with reactance-tuned coupling and maintained resonance," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1803-1813, Apr. 2012.
doi:10.1109/TAP.2012.2186265

20. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using wave guided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, Apr. 2012.
doi:10.1109/LAWP.2012.2193111

21. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1501-1503, Dec. 2012.
doi:10.1109/LAWP.2012.2232274