Vol. 60
Latest Volume
All Volumes
PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-26
Broadband Transition from Microstrip Line to Waveguide Using a Radial Probe and Extended GND Planes for Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 60, 95-100, 2016
Abstract
A broadband microstrip line-to-waveguide (MSL-to-WG) transition is developed for E-band applications. In order to achieve a sufficient and broadband coupling between the microstrip line (MSL) and waveguide (WG), a radial electric probe at the end of the MSL and extended ground (GND) planes on the dielectric substrate are proposed. Results are compared against a simple transition (S-Tr) with a straight electric probe. For the case of operational bandwidth (BW) for an input return loss (S11) below -20 dB, the proposed transitions using the radial probe and extended GND planes show the BW enhancement of 33.8% and 61.9%, respectively, compared to the S-Tr. The proposed and simple transitions were fabricated on a low-loss liquid crystal polymer (LCP) dielectric substrate. The measured bandwidth (BW) for S11 below -10 dB of the proposed transition is over 28 GHz, which is satisfied at all test frequencies from 67 to 95 GHz. Its measured insertion loss can be analyzed as -1.33 and -1.41 dB per transition at 70 and 80 GHz, respectively, considering the loss contribution of the cable adapter and waveguide transition.
Citation
Azzemi Ariffin Dino Isa Amin Malekmohammadi , "Broadband Transition from Microstrip Line to Waveguide Using a Radial Probe and Extended GND Planes for Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 60, 95-100, 2016.
doi:10.2528/PIERL16040801
http://www.jpier.org/PIERL/pier.php?paper=16040801
References

1. Asif, S. Z., "E-band microwave radios for mobile backhaul," I. J. Wireless and Microwave Technologies, Vol. 4, 37-46, 2015.
doi:10.5815/ijwmt.2015.04.04

2. Gresham, I., N. Jain, T. Budka, A. Alexanian, N. Kinayman, B. Ziegner, S. Brown, and P. Staecker, "A compact manufacturable 76-77-GHz radar module for commercial ACC applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 44-58, 2001.
doi:10.1109/22.899961

3. Mehrpouyan, H., M. Khanzadi, M. Matthaiou, A. Sayeed, R. Schober, and Y. Hua, "Improving bandwidth efficiency in e-band communication systems," IEEE Communications Magazine, Vol. 52, 121-128, 2014.
doi:10.1109/MCOM.2014.6766096

4. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. De Raedt, "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

5. Dong, J., T. Yang, Y. Liu, Z. Yang, and Y. Zhou, "Broadband rectangular waveguide to GCPW transition," Progress In Electromagnetics Research Letters, Vol. 46, 107-112, 2014.
doi:10.2528/PIERL14050907

6. Shih, Y.-C., T.-N. Ton, and L. Q. Bui, "Waveguide-to-microstrip transitions for millimeter-wave applications," IEEE MTT-S International Microwave Symposium Digest, 473-475, 1988.

7. Yano, H. Y., A. Abdelmonem, J. F. Liang, and K. A. Zaki, "Analysis and design of microstrip to waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2371-2379, 1994.
doi:10.1109/22.339769

8. Kaneda, N., Y. Qian, and T. Itoh, "A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2562-2567, 1999.
doi:10.1109/22.809007

9. Sakakibara, K., M. Hirono, N., Kikuma, and H. Hirayama, "Broadband and planar microstrip-to-waveguide transitions in millimeter-wave band," International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 3, 1278-1281, 2008.

10. Lee, Y. C. and C. S. Park, "A compact broadband PHEMT MMIC power amplifier for K through Ka-band applications," Int. J. Electron. Commun. (AEU), Vol. 57, 1-4, 2003.

11. Marcuvitz, N., Waveguide Handbook, Chapter 5, IEE Press, London, U.K., 1993.