Vol. 62

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-08-29

Polarization Conversion Metasurface for Broadband Radar Cross Section Reduction

By Wen Jiang, Yu Xue, and Shu-Xi Gong
Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016
doi:10.2528/PIERL16060504

Abstract

A novel polarization conversion metasurface (PCM) is proposed and applied to radar cross section (RCS) reduction. The proposed design has the advantage of simple geometry while simultaneously reducing RCS over broadband. The metasurface is created by the combination of an oblique split ring resonator (SRR) and a cut-wire resonator, which is capable of converting a linear polarization state into its orthogonal one. The simulation results show that the 10 dB bandwidth of polarization conversion is obtained in wideband from 9.4 to 19.2 GHz, with an average polarization conversion ratio (PCR) of nearly 100%. Due to the high PCR, RCS reduction of 10 dB can be realized over 60% frequency bandwidth with respect to the equal-sized PEC ground plane. The maximum reduction is 32.8 dB. To validate the simulation results, prototypes of the PCM are fabricated and measured. Excellent agreement between simulations and measurements is achieved.

Citation


Wen Jiang, Yu Xue, and Shu-Xi Gong, "Polarization Conversion Metasurface for Broadband Radar Cross Section Reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504
http://www.jpier.org/PIERL/pier.php?paper=16060504

References


    1. Thakare, Y. B. and Rajkumar, "Design of fractal patch antenna for size and radar cross-section reduction," Microw. Antennas Propag., Vol. 4, No. 2, 175-181, Feb. 2010.
    doi:10.1049/iet-map.2008.0325

    2. Pan, W. B., C. Huang, P. Chen, X. L. Ma C.-G. Hu, and X.-G. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. on Antennas and Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
    doi:10.1109/TAP.2013.2291008

    3. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Trans. on Antennas and Propag., Vol. 60, No. 6, 2740-2747, Jun. 2012.
    doi:10.1109/TAP.2012.2194640

    4. Li, Y. Q., H. Zhang, Y. Q. Fu, and N. C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.

    5. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Trans. on Antennas and Propag., Vol. 55, No. 12, 3630-3638, Dec. 2007.
    doi:10.1109/TAP.2007.910306

    6. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
    doi:10.2528/PIER10060402

    7. Iriarte, J. C., A. T. Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. on Antennas and Propag., Vol. 61, No. 12, 6136-6143, Dec. 2013.
    doi:10.1109/TAP.2013.2282915

    8. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. on Antennas and Propag., Vol. 63, No. 6, 2636-2645, Jun. 2015.
    doi:10.1109/TAP.2015.2414440

    9. Zheng, Y. J., J. Gao, X.-Y. Cao, Z.-D. Yuan, and H.-H. Yang, "Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1582-1585, 2015.
    doi:10.1109/LAWP.2015.2413456

    10. Liu, Y., K. Li, Y.-T. Jia, Y.-W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurface," IEEE Trans. on Antennas and Propag., Vol. 64, No. 1, 326-331, Jan. 2016.
    doi:10.1109/TAP.2015.2497352

    11. Jia, Y.-T., Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. on Antennas and Propag., Vol. 64, No. 1, 179-188, Jan. 2016.
    doi:10.1109/TAP.2015.2502981

    12. Liu, Y., Y.-W. Hao, K. Li, and S. X. Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2016.
    doi:10.1109/LAWP.2015.2430363

    13. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, 1304-1307, Jun. 2013.
    doi:10.1126/science.1235399

    14. Gao, X., X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Trans. on Antennas and Propag., Vol. 63, No. 8, 3522-3530, Aug. 2015.
    doi:10.1109/TAP.2015.2434392

    15. Yu, N.-F., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, Oct. 2011.