Vol. 68
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-19
Employing a Pair of T-Shaped Stepped-Impedance-Stubs Inside the Free Area of Miniaturized Wilkinson Power Dividers with Harmonic Suppression Capable of Operating at Optional Frequencies
By
Progress In Electromagnetics Research Letters, Vol. 68, 39-46, 2017
Abstract
In this article, a pair of T-shaped stepped-impedance-stubs plays a key role in the structure of a Wilkinson power divider. In the first step, to find a general relation between electrical lengths and characteristic impedances of the mentioned stubs and consequently how the operating frequency can be chosen, an equation based on a mathematical analysis is obtained. Then, by using this equation several miniaturized Wilkinson power dividers with the same configurations at different operating frequencies and capable of suppressing spurious frequencies are designed. Moreover, in each of these circuits 2nd to 16th unwanted frequencies are suppressed. The simulation results of the designed dividers are in good agreement with the expected responses predicted by the obtained equation. To validate the proposed method, a Wilkinson power divider at 0.85 GHz as a sample is fabricated, and 77.83% size reduction is obtained. Furthermore, the fabricated divider suppresses 3rd to 21st harmonics better than -20 dB.
Citation
Ashkan Abdipour, and Arash Abdipour, "Employing a Pair of T-Shaped Stepped-Impedance-Stubs Inside the Free Area of Miniaturized Wilkinson Power Dividers with Harmonic Suppression Capable of Operating at Optional Frequencies," Progress In Electromagnetics Research Letters, Vol. 68, 39-46, 2017.
doi:10.2528/PIERL17032209
References

1. Hong, J. S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2004.

2. Kim, M. G., J. S. Kim, and R. Mittra, "Modified Wilkinson power divider for suppression of nth harmonics," Electronics Letters, Vol. 48, No. 24, 1540-1542, 2012.
doi:10.1049/el.2012.3423

3. Xu, X. and X. Tang, "Design of a compact Wilkinson power divider with high order harmonics suppression," Progress In Electromagnetics Research Letter, Vol. 50, 111-116, 2014.
doi:10.2528/PIERL14110501

4. Zhou, B., W. X. Sheng, and H. Wang, "Slow-wave effect enhanced branch linepower divider using crossing bond wires," Electronics Letters, Vol. 47, No. 22, 1246-1247, 2011.
doi:10.1049/el.2011.2545

5. Lin, C. M., H. H. Su, J. C. Chiu, and Y. H. Wang, "Wilkinson power divider using microstrip EBG cells for the suppression of harmonics," IEEE Microwave and Wireless Components Letters, Vol. 17, 700-702, 2007.
doi:10.1109/LMWC.2007.905595

6. Zhang, F. and C. F. Li, "Power divider with microstrip electromagnetic bandgap element for miniaturization and harmonic rejection," Electronics Letters, Vol. 44, No. 6, 422-423, 2008.
doi:10.1049/el:20083693

7. Woo, D. J. and T. L. Lee, "Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 2139-2144, 2005.
doi:10.1109/TMTT.2005.848772

8. Yang, J., C. Gu, and W. Wu, "Design of novel compact coupled microstrip power divider with harmonic suppression," IEEE Microwave Wireless Components Letters, Vol. 18, No. 9, 572-574, 2008.
doi:10.1109/LMWC.2008.2002444

9. Kim, J. S., M. J. Park, and K. B. Kong, "Modified design of Wilkinson power divider for harmonic suppression," Electronics Letters, Vol. 45, No. 23, 1174-1175, 2009.
doi:10.1049/el.2009.2126

10. Tseng, C. H. and C. H. Wu, "Compact planar Wilkinson power divider using π-equivalent shunt-stub-based artificial transmission lines," Electronics Letters, Vol. 46, No. 19, 1327-1328, 2010.
doi:10.1049/el.2010.2194

11. Wang, J., J. Ni, Y. X. Guo, and D. Fang, "Miniaturized microstrip Wilkinson power divider with harmonic suppression," IEEE Microwave and Wireless Components Letters, Vol. 19, 440-442, 2009.
doi:10.1109/LMWC.2009.2022124

12. Packiaraj, D., K. J. Vinoyb, M. Ramesha, and A. T. Kalghatgi, "Design of compact low pass filter with wide stop band using tri-section stepped impedance resonator," AEU --- International Journal of Electronics and Communications, Vol. 65, No. 12, 1012-1014, 2011.
doi:10.1016/j.aeue.2011.03.018

13. Gao, S. S., S. Sun, and S. Xiao, "A novel wideband bandpass power divider with harmonic-suppressed ring resonator," IEEE Microwave Wireless Components Letters, Vol. 23, No. 3, 507-509, 2013.
doi:10.1109/LMWC.2013.2244873

14. Cheng, K. K. M. and W. C. Ip, "A novel power divider design with enhanced spurious suppression and simple structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 12, 3903-3908, Dec. 2010.