Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-06-07

Synthetic Aperture Radar Ship Detection Using Modifi Ed Gamma Fisher Metric

By Meng Yang
Progress In Electromagnetics Research Letters, Vol. 68, 85-91, 2017
doi:10.2528/PIERL17040803

Abstract

This article proposes a novel ship detection method for high-resolution SAR images. Our goal is to look at this question from a information geometry point of view. The method consists of two steps: construction of revised metric and Riemann structure, and extraction of targets. For the first step of the process, a revised metric is introduced on Gamma 2-manifold. We construct a special Riemannian structure by using the proposed metric. For the second step, the regions of interest (ROIs) are extracted out based on the Riemann structure. Experimental results of the detection method on SAR images show that the algorithm presented is effective.

Citation


Meng Yang, "Synthetic Aperture Radar Ship Detection Using Modifi Ed Gamma Fisher Metric," Progress In Electromagnetics Research Letters, Vol. 68, 85-91, 2017.
doi:10.2528/PIERL17040803
http://www.jpier.org/PIERL/pier.php?paper=17040803

References


    1. Isernia, T., A. Massa, A. F. Morabito, and P. Rocca, "On the optimal synthesis of phase-only reconfigurable antenna arrays," European Conf. Antennas and Propagation, 2074-2077, 2011.

    2. Qin, F., S. Gao, Q. Luo, C. Mao, C. Gu, G. Wei, J. Xu, J. Li, C. Wu, K. Zheng, and S. Zheng, "A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars," IEEE Trans. Antennas Propagation, Vol. 64, No. 7, 2914-2922, 2016.
    doi:10.1109/TAP.2016.2559526

    3. Marino, A. and I. Hajnsekand, "Statistical tests for a ship detector based on the polarimetric notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 8, 4578-4595, 2015.
    doi:10.1109/TGRS.2015.2402312

    4. Touzi, R., J. Hurley, and P. Vachon, "Optimization of the degree of polarization for enhanced ship detection using polarimetric RADARSAT-2," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 10, 5403-5424, 2015.
    doi:10.1109/TGRS.2015.2422134

    5. Zilman, G., A. Zapolski, and M. Marom, "On detectability of a ship’s Kelvin wake in simulated SAR images of rough sea surface," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 2, 609-619, 2015.
    doi:10.1109/TGRS.2014.2326519

    6. Tao, D., S. Anfinsen, and C. Brekke, "Robust CFAR detector based on truncated statistics in multiple-target situations," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 1, 117-134, 2016.
    doi:10.1109/TGRS.2015.2451311

    7. Schwegmann, C., W. Kleynhans, and B. Salmon, "Manifold adaptation for constant false alarm rate ship detection in south African oceans," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 8, No. 7, 3329-3337, 2015.
    doi:10.1109/JSTARS.2015.2417756

    8. Schwegmann, C., W. Kleynhans, and B. Salmon, "Synthetic aperture radar ship detection using Haar-like features," IEEE Geosci. Remote Sens. Lett., Vol. 14, No. 2, 154-158, 2017.
    doi:10.1109/LGRS.2016.2631638

    9. Arwini, K. A. and C. T. J. Dodson, "Information Geometry --- Near Randomness and Near Independence," Springer-Verlag, 2008.

    10. Nielsen, F. and R. Bhatia, Matrix Information Geometry, Springer-Verlag, Heidelberg, 2013.
    doi:10.1007/978-3-642-30232-9

    11. Amari, S., Information Geometry and Its Application, Springer, Tokyo, 2016.
    doi:10.1007/978-4-431-55978-8

    12. Forbes, C., M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, Wiley, New York, 2010.
    doi:10.1002/9780470627242