Vol. 69
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-07
Compact Filtering Antenna Based on Dumbbell-Shaped Resonator
By
Progress In Electromagnetics Research Letters, Vol. 69, 51-57, 2017
Abstract
A filtering antenna based on a dumbbell-shaped resonator is proposed, fabricated and measured. A Γ-shaped antenna and the proposed dumbbell-shaped resonator are used and integrated to be a filtering antenna. The Γ-shaped antenna which acts as a radiator is excited by a coupled line. Measured results show that the filtering antenna achieves an impedance bandwidth of 6.7% at a reflection coefficient |S11| < -10dB and has a gain of 1.35 dBi. Moreover, a radiation zero occurs at 3.1GHz. Compared with the characteristics of fundamental Γ-shaped antenna, the design of the dumbbell resonator has little impact on antenna's radiation patterns. In addition, to explain the mechanism of filtering antenna, the analysis of surface current distribution on patch is given. The size of filtering antenna is 0.33λ0×0.17λ00 is the free-space wavelength at 2.45 GHz). Compared to other recent works, a simpler structure and more compact size are the key features. Owing to the operating bandwidth and the characteristic of filtering, the proposed antenna can be used in modern wireless communications systems.
Citation
Xue-Liang Min Hou Zhang , "Compact Filtering Antenna Based on Dumbbell-Shaped Resonator," Progress In Electromagnetics Research Letters, Vol. 69, 51-57, 2017.
doi:10.2528/PIERL17042803
http://www.jpier.org/PIERL/pier.php?paper=17042803
References

1. Wang, Z.-Y. and C.-P. Zhang, "A planar UWB antenna with triple-notched bands," Progress In Electromagnetics Research Letters, Vol. 52, 99-104, 2015.
doi:10.2528/PIERL15010402

2. Ding, C., J. Li, F. Wei, and X. Shi, "Compact bandpass filter based on parallel-coupled lines and quasi-lumped structure," Frequenz, Vol. 70, 11-15, 2016.
doi:10.1515/freq-2015-0056

3. Wu, C.-M. and Y.-H. Liu, "An ultra-wideband twin-patch monopole antenna with band-rejection characteristic," Progress In Electromagnetics Research Letters, Vol. 53, 77-82, 2015.
doi:10.2528/PIERL15030107

4. Chuang, C.-T. and S.-J. Chung, "A compact printed filtering antenna using a ground-intruded coupled line resonator," IEEE Transactions on Antennnas and Propagation, Vol. 59, No. 10, 2011.
doi:10.1109/TAP.2011.2163777

5. Chen, L. and Y.-L. Luo, "Compact filtering antenna using CRLH resonator and defected ground structure," Electronics Letters, Vol. 50, No. 21, 1496-1498, 2014.
doi:10.1049/el.2014.2703

6. Wu, W.-J., Y.-Z. Yin, S.-L. Zuo, Z.-Y. Zhang, and J.-J. Xie, "A new compact filter-antenna for modern wireless communication systems," IEEE Antennnas and Wireless Propagation Letters, Vol. 10, 1131-1134, 2011.

7. Wong, S.W., T. G. Huang, C. X. Mao, Z. N. Chen, and Q. X. Chu, "Planar filtering ultra-wideband (UWB) antenna with shorting pins," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 948-952, 2013.
doi:10.1109/TAP.2012.2223438

8. Chen, X., F. Zhao, L. Yan, and W. Zhang, "A compact filtering antenna with flat gain response within the passband," IEEE Antennnas and Wireless Propagation Letters, Vol. 12, 857-860, 2013.
doi:10.1109/LAWP.2013.2271972

9. Hsieh, C.-Y., C.-H. Wu, and T.-G. Ma, "A compact dual-band filtering patch antennausing step impedance resonators," IEEE Antennnas and Wireless Propagation Letters, Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

10. Wu, P.-C., L. Chen, and Y.-L. Luo, "Miniaturised wideband filtering antenna by employing CRLH-TL and simplified feeding structure," Electronics Letters, Vol. 51, No. 7, 548-550, 2015.
doi:10.1049/el.2015.0329

11. Duan, W., X. Y. Zhang, Y.-M. Pan, J.-X. Xu, and Q. Xue, "Dual-polarized filtering antenna with high selectivity and low cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4188-4196, 2016.
doi:10.1109/TAP.2016.2594818

12. Lin, C.-K. and S.-J. Chung, "A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 381-384, 2011.

13. Hsieh, C.-Y., C.-H. Wu, and T.-G. Ma, "A compact dual-band filtering patch antenna using step impedance resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

14. Jiang, Z. H. and D. H. Werner, "A compact, wideband circularly polarized co-designed filtering antenna and its application for wearable devices with low SAR," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 3808-3818, 2015.
doi:10.1109/TAP.2015.2452942

15. Zhang, X. Y., W. Duan, and Y.-M. Pan, "High-gain filtering patch antenna without extra circuit," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5883-5888, 2015.
doi:10.1109/TAP.2015.2481484

16. Koley, S. and D. Mitra, "A planar microstrip-fed tri-band filtering antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, No. 1, 233-237, 2015.
doi:10.1002/mop.28813

17. Soltanpour, M. and M. M. Fakharian, "Compact filtering slot antenna with frequency agility for Wi-Fi/LTE mobile applications," Electronics Letters, Vol. 52, No. 7, 491-492, 2016.
doi:10.1049/el.2015.3198

18. Mandal, M. K., Z. N. Chen, and X. Qing, "Compact ultra-wideband filtering antennas on low temperature co-fired ceramic substrate," Asia Pacific Microwave Conference, 2009.

19. Zuo, J. H., X. W. Chen, G. R. Han, L. Li, and W. M. Zhang, "An integrated approach to RF antenna-filter co-design," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 141-144, 2009.

20. Fakharian, M. M., P. Rezaei, A. A. Orouji, and M. Soltanpur, "A wideband and reconfigurable filtering slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 2016.