Vol. 74
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-04
A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate
By
Progress In Electromagnetics Research Letters, Vol. 74, 117-123, 2018
Abstract
The block diagram of a TR (Transmit Receive) module that consists of four channels using a silicon substrate is presented in this paper. The silicon substrate fabricated by microelectronic process has been adopted to increase the interconnect density of module. Several broadband vertical transitions are simulated and optimized by EM simulator. The vertical transition works well from DC to 40 GHz. The insertion loss is less than 1 dB, and the return loss is better than -15 dB in back-to-back configuration. A novel TR module based on the silicon substrate is proposed for its miniaturization and high integration advantages. The module occupies a compact area of 30 mm×20 mm×1.8 mm, and the weight is 1.77 g.
Citation
Jun Zhou, Jiapeng Yang, Donglei Zhao, and Dongsheng Yang, "A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate," Progress In Electromagnetics Research Letters, Vol. 74, 117-123, 2018.
doi:10.2528/PIERL17081604
References

1. Merkle, T. and R. Gotzen, "Millimeter-wave surface mount technology for 3-D printed polymer multichip modules," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, 201-206, 2015.
doi:10.1109/TCPMT.2014.2387232

2. Mi, X., O. Toyoda, and S. Ueda, "A 3D heterogeneous integration method using LTCC wafer for RF applications," 2011 IEEE International 3D Systems Integration Conference (3DIC), 1-5, 2012.

3. Lim, K., S. Pinel, M. Davis, and A. Sutono, "RF-system-on-package (SOP) for wireless communications," IEEE Microwave Magazine, Vol. 3, 88-99, 2002.
doi:10.1109/MMW.2002.990700

4. Tummala, R. R. and J. Laskar, "Gigabit wireless: System-on-a-package technology," Proceedings of the IEEE, Vol. 92, 376-387, 2004.
doi:10.1109/JPROC.2003.821902

5. Juntunen, E., W. Khan, and C. Patterson, "An LCP packaged high-power, high-e±ciency CMOS millimeter-wave oscillator," 2011 IEEE MTT-S International Microwave Symposium, 1-4, 2011.

6. Tripodi, L., X. Hu, and R. Gotzen, "Broadband CMOS millimeter-wave frequency multiplier with vivaldi antenna in 3-D chip-scale packaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3761-3768, 2012.
doi:10.1109/TMTT.2012.2220564

7. Titz, D., R. Pilard, F. Ferrero, and F. Gianesello, "60 GHz antenna integrated on High Resistivity silicon technologies targeting WHDMI applications," 2011 IEEE Radio Frequency Integrated Circuits Symposium, 1-5, 2011.

8. Jin, C., V. N. Sekhar, and X. Bao, "Antenna-in-package design based on wafer-level packaging with through silicon via technology," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, 1498-1505, 2013.
doi:10.1109/TCPMT.2013.2261855

9. Zhang, R., J. C. C. Lo, and S. W. R. Lee, "Design and fabrication of a silicon interposer with TSVs in cavities for three-dimensional IC packaging," IEEE Transactions on Device and Materials Reliability, Vol. 12, 189-193, 2012.
doi:10.1109/TDMR.2012.2190764

10. Li, R., C. Jin, and S. C. Ong, "Embedded wafer level packaging for 77-GHz automotive radar front-end with through silicon via and its 3-D integration," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, 1481-1488, 2013.
doi:10.1109/TCPMT.2012.2236385