Vol. 71
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-11-10
A Novel and Compact UWB Bandpass Filter-Crossover Using Microstrip to CPS Transitions
By
Progress In Electromagnetics Research Letters, Vol. 71, 103-108, 2017
Abstract
In this letter, a new compact UWB uniplanar crossover with bandpass filter characteristics is proposed and implemented. The UWB Filter-Crossover is composed of two novel UWB filters placed on the top and bottom of the substrate to obtain the crossover features. These proposed filters are based on microstrip to coplanar stripline (CPS) transitions and sections of CPS section line used as a multiple mode resonator (MMR). The simulated and measured results show a good result in terms of isolation, return loss and insertion loss in the entire UWB band.
Citation
Mohamed Lamine Seddiki, Mourad Nedil, and Farid Ghanem, "A Novel and Compact UWB Bandpass Filter-Crossover Using Microstrip to CPS Transitions," Progress In Electromagnetics Research Letters, Vol. 71, 103-108, 2017.
doi:10.2528/PIERL17082703
References

1. Seddiki, M. L., F. Ghanem, M. Nedil, and A. Bouklif, "Compact crossover on multilayer substrate for UWB applications," Electronics Letters, Vol. 53, 2017.
doi:10.1049/el.2016.3682

2. Tang, C. W., K. C. Lin, and W. C. Chen, "Analysis and design of compact and wide-passband planar crossovers," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, 2975-2982, 2014.
doi:10.1109/TMTT.2014.2364839

3. Eom, S. Y., A. Batgerel, and L. Minz, "Compact broadband microstrip crossover with isolation improvement and phase compensation," IEEE Microwave and Wireless Components Letters, Vol. 24, 481-483, 2014.
doi:10.1109/LMWC.2014.2303163

4. Liu, A. W., Z. Zhang, Z. Feng, and M. F. Iskander, "A compact wideband microstrip crossover," IEEE Microwave and Wireless Components Letters, Vol. 22, 254-256, 2012.
doi:10.1109/LMWC.2012.2190270

5. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "Systematic design technique for dual-band branch-line coupler using T- and Pi-networks and their application in novel wideband-ratio crossover," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, 784-795, 2016.
doi:10.1109/TCPMT.2016.2548498

6. Abbosh, A. M., "Wideband planar crossover using two-port and four-port microstrip to slotline transitions," IEEE Microwave and Wireless Components LettersIEEE Microwave and Wireless Components Letters, Vol. 22, 465-467, 2012.
doi:10.1109/LMWC.2012.2209632

7. Abbosh, A., S. Ibrahim, and M. Karim, "Ultra-wideband crossover using microstrip-to-coplanar waveguide transitions," IEEE Microwave and Wireless Components Letters, Vol. 22, 500-502, 2012.
doi:10.1109/LMWC.2012.2218586

8. Gao, T., Y. C. Li, S. Y. Zheng, and Y. X. Bao, "Patch crossover with bandpass filtering function," Microw. Opt. Technol. Lett., Vol. 58, Dec. 2016.

9. Zhu, H., A. M. Abbosh, and L. Guo, "Wideband four-way filtering power divider with sharp selectivity and wide stopband using looped coupled-line structures," IEEE Microwave and Wireless Components Letters, Vol. 26, 413-415, 2016.
doi:10.1109/LMWC.2016.2562107

10. Wang, X., B. J. Hu, and H. L. Zhang, "Compact filtering crossover using stub-loaded ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 24, 327-329, 2014.
doi:10.1109/LMWC.2014.2309083

11. Feng, W., Y. Zhang, and W. Che, "Wideband filtering crossover using dual-mode ring resonator," Electronics Letters, Vol. 52, 541-542, 2016.
doi:10.1049/el.2015.4366

12. Tornielli di Crestvolant, C. V., P. Martin Iglesias, and M. J. Lancaster, "Advanced butler matrices with integrated bandpass filter functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 3433-3444, 2015.
doi:10.1109/TMTT.2015.2460739

13. Ai, J., Y. Zhang, K. D. Xu, D. Li, and Y. Fan, "Miniaturized quint-band bandpass filter based on multi-mode resonator and lambda/4 resonators with mixed electric and magnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 26, 343-345, 2016.
doi:10.1109/LMWC.2016.2549643