Vol. 72
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-12
A High Gain Double-Octagon Fractal Microstrip Yagi Antenna
By
Progress In Electromagnetics Research Letters, Vol. 72, 83-89, 2018
Abstract
A Double-Octagon Fractal Microstrip Yagi Antenna (D-OFMYA) which is aimed to cover unlicensed frequency of 5.8 GH is presented in this paper. The primary purpose of this experiment is to enhance gain of conventional microstrip antenna. The proposed antenna built on Arlon CuClad 217 substrate with thickness of 0.787 mm and dielectric permittivity of 2.2. A 3D full-wave EM simulator was used to design and to simulate the antenna. A computerized simulation model of the proposed antenna showed that the antenna is able to generate a maximum gain of 14.49 dB with S11 of -24.2 dB in a surface size of 80 mm x 120 mm. By contrast, results of an experiment indicated the fabricated D-OFMYA can reach a gain as high as 14 dB with the value of S11 is -19.8 dB. It can be concluded that a nominal gain of the D-OFMYA comes in higher than other microstrip Yagi array antennas and size reduction can be achieved through this design.
Citation
Kamelia Quzwain, Alyani Ismail, and Aduwati Sali, "A High Gain Double-Octagon Fractal Microstrip Yagi Antenna," Progress In Electromagnetics Research Letters, Vol. 72, 83-89, 2018.
doi:10.2528/PIERL17092605
References

1. Ahson, S. and M. Ilyas, WiMAX: Application, BCRC Press, Boca Raton, FL, USA, 2008.

2. Lehpamer, H., Microwave Transmission Networks — Planning, Design and Deployment, McGraw- Hill, New York, USA, 2004.

3. Maitra, A. K., Wireless Spectrum Management, McGraw-Hill, New York, USA, 2004.

4. Azaro, R., G. Boata, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4–3.6GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 4, 116-119, 2006.
doi:10.1109/LAWP.2006.872427

5. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., John Wiley and Sons, New York, USA, 1998.

6. Viani, F., M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

7. Huang, J. and A. C. Densmore, "Microstrip Yagi array antenna for mobile satellite vehicle application," IEEE Trans. Antennas and Propagat., Vol. 39, No. 7, 1024-1030, 1991.
doi:10.1109/8.86924

8. Padhi, S. K. and M. E. Bialkowski, "A microstrip Yagi antenna using EBG structure," Radio Science, Vol. 38, No. 3, 2003.
doi:10.1029/2002RS002697

9. DeJean, G. R., T. T. Thai, S. Nikolaou, and M. M. Tentzeris, "Design and analysis of microstrip bi-Yagi and quad-Yagi antenna arrays for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 6, 244-248, 2007.
doi:10.1109/LAWP.2007.893104

10. Liu, J. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Trans. Antennas and Propagat., Vol. 61, No. 3, 1140-1147, 1991.
doi:10.1109/TAP.2012.2230239

11. Quzwain, K., A. Ismail, and A. Sali, "Octagon fractal microstrip Yagi antenna with a combined DNG and DPS later structure," Microwave and Optical Technology Letters, Vol. 59, No. 8, 1988-1993, 2017.
doi:10.1002/mop.30666

12. Azaro, R., F. De Natale, M. Donelli, E. Zeni, and A. Massa, "Synthesis of a prefractal dualband monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, 2006.
doi:10.1109/LAWP.2006.880695

13. Quzwain, K., A. Ismail, and A. Sali, "Compact high gain and wideband octagon microstrip Yagi antenna," Electromagnetics Journal, Vol. 36, 524-533, 2016.
doi:10.1080/02726343.2016.1236060

14. Jin, W., X. Yang, X. Ren, and K. Huang, "A novel two-layer stacked microstrip antenna array using cross snowflake fractal patches," Progress In Elctromagnetics Reseearch C, Vol. 42, 95-108, 2013.
doi:10.2528/PIERC13061009

15. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

16. DeJean, G. R. and M. M. Tentzeris, "A new high-gain microstrip Yagi array antenna with a high front-to-back (F/B) ratio for WLAN and millimeter-wave applications," IEEE Trans. Antennas and Propagat., Vol. 55, No. 2, 298-304, 2007.
doi:10.1109/TAP.2006.889818

17. Bhartia, P., I. Bahl, R. Garg, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artch House, London, 2001.