Vol. 73
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-03
Separation of the Metallic and Dielectric Losses of Tunable Ferroelectric Capacitors Under Control DC Voltage
By
Progress In Electromagnetics Research Letters, Vol. 73, 127-131, 2018
Abstract
An approach to separate metallic and dielectric losses in ferroelectric capacitors in all range of tuning under control dc voltages (Udc) is considered. The procedure is based on measurements of the dc voltage dependencies of microwave losses (tanδt(Udc)) and capacitance (C(Udc)) for a set of capacitors with similar layout but with different nominals. Linear extrapolation of tanδt(C) dependencies at different control dc voltages to C = 0 allows to evaluate the dielectric losses tanδd as a function of the control dc voltage. The procedure of separation was performed for a set of sandwich metal/(Ba0:5Sr0:5)TiO3/metal capacitors. Capacitors parameters were measured at a frequency of 2 GHz in a range of electric field strength in ferroelectric of E = (0 - 30) V/μm. The intrinsic commutation quality factor of BSTO lm itself was estimated by the method proposed.
Citation
Igor V. Kotelnikov, Vitaly N. Osadchy, Roman Andreevich Platonov, Andrey Altynnikov, Valentina V. Medvedeva, Anatoly K. Mikhailov, Aleksandr G. Gagarin, Andrey V. Tumarkin, and Andrey B. Kozyrev, "Separation of the Metallic and Dielectric Losses of Tunable Ferroelectric Capacitors Under Control DC Voltage," Progress In Electromagnetics Research Letters, Vol. 73, 127-131, 2018.
doi:10.2528/PIERL17111704
References

1. Gevorgian, S., Ferroelectrics in Microwave Devices, Circuits and Systems, Springer-Verlag, London, 2009.
doi:10.1007/978-1-84882-507-9

2. Meyers, C. J. G., C. R. Freeze, S. Stemmer, and R. A. York, "(Ba,Sr)TiO3 tunable capacitors with RF commutation quality factors exceeding 6000," App. Phys. Lett., Vol. 109, No. 11, 112902, 2016.
doi:10.1063/1.4961626

3. Maune, H., M. Jost, A. Wiens, C. Weickhmann, R. Reese, M. Nikfalazar, C. Schuster, T. Franke, W. Hu, M. Nickel, D. Kienemund, A. E. Prasetiadi, and R. Jakoby, "Tunable microwave component technologies for satcom-platforms," Frequenz, Vol. 71, No. 3-4, 129-142, 2017.
doi:10.1515/freq-2016-0207

3. Rammal, M., L. Huitema, A. Crunteanu, D. Passerieux, D. Cros, T. Monediere, V. Madrangeas, P. Dutheil, C. Champeaux, F. Dumas-Bouchiat, P. Marchet, L. Nedelcu, L. Trupina, G. Banciu, and M. Cernea, "BST thin film capacitors integrated within a frequency tunable antenna," 2016 International Workshop on Antenna Technology (iWAT), 44-47, 2016.

5. Tagantsev, A. K., V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, "Ferroelectric materials for microwave tunable applications," J. Electroceram., Vol. 11, No. 1-2, 5-66, 2003.
doi:10.1023/B:JECR.0000015661.81386.e6

6. Houzet, G., L. Burgnies, G. Velu, J.-C. Carru, and D. Lippens, "Dispersion and loss of ferroelectric Ba0.5Sr0.5TiO3 thin films up to 110 GHz," App. Phys. Lett., Vol. 93, No. 5, 053507, 2008.
doi:10.1063/1.2969469

7. Ayguavives, F., Z. Jin, A. Tombak, J. P. Maria, A., Mortazawi, A. I. Kingon, G. T. Stauf, C. Ragaglia, J. F. Roeder, and M. Brand, "Contribution of dielectric and metallic losses in RF/microwave tunable varactors using (Ba,Sr)TiO3 thin films," Integr. Ferroelectr., Vol. 39, No. 1-4, 393-402, 2001.
doi:10.1080/10584580108011963

8. Kozyrev, A. B., D. M. Kosmin, I. V. Kotelnikov, A. K. Mikhailov, and V. N. Osadchy, "A method and device for measuring the capacitance and Q-factor of microwave varactors and variconds," Meas. Techn., Vol. 55, No. 7, 834-838, 2012.
doi:10.1007/s11018-012-0047-3

9. Certificate No. 18-09 of 12-03-2009 by Siberian State Research Institute of Metrology (SNIIM).

10. Vendik, I. B., O. G. Vendik, and E. L. Kollberg, "Commutation quality factor of two-state switchable devices," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 5, 802-808, 2000.
doi:10.1109/22.841874

11. McDaniel, M. D., T. Q. Ngo, S. Hu, A. Posadas, A. A. Demkov, and J. G. Ekerdt, "Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors," Appl. Phys. Rev., Vol. 2, 041301, 2015.
doi:10.1063/1.4934574