Vol. 73
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-02-19
Stable Implicit Scheme for TM Transient Scattering from 2D Conducting Objects Using TD-EFIE
By
Progress In Electromagnetics Research Letters, Vol. 73, 99-104, 2018
Abstract
To improve stability of time-domain integral equation, a stable implicit scheme is proposed to solve the transverse-magnetic (TM) electromagnetic scattering from 2D conducting objects. The time-domain electric-field integral equation (TD-EFIE) was adopted and expressed using second-order derivative of the magnetic vector potential. To reduce numerical error, the magnetic vector potential was approximated by second-order central finite difference. TM transient scattering from 2D conducting objects was calculated by an implicit marching-on-in-time (MOT) scheme. To obtain stable numerical results, the TD-EFIE MOT implicit scheme was firstly combined with the time-averaging technique. The accuracy and stability of the scheme were demonstrated by comparison with the results from inverse discrete Fourier transform technique.
Citation
Qiang Wang, Li-Xin Guo, Peng-Ju Yang, and Zhong-Yu Liu, "Stable Implicit Scheme for TM Transient Scattering from 2D Conducting Objects Using TD-EFIE," Progress In Electromagnetics Research Letters, Vol. 73, 99-104, 2018.
doi:10.2528/PIERL18011705
References

1. Rao, S. M., Time Domain Electromagnetics, Academic Press, New York, 1999.

2. Xiao, G., X. Tian, W. Luo, and J. Fang, "Impulse responses and the late time stability properties of time-domain integral equations," IET Microw. Antennas Propag., Vol. 9, No. 7, 603-610, 2014.
doi:10.1049/iet-map.2014.0318

3. Jung, B. H., T. K. Sarkar, Y. S. Chung, M. S. Palma, Z. Ji, S. M. Jang, and K. J. Kim, "Transient electromagnetic scattering from dielectric objects using the electric field integral equation with Laguerre polynomials as temporal basis functions," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2329-2340, 2004.
doi:10.1109/TAP.2004.834062

4. Jung, B.-H., Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the TDIE solver," Progress In Electromagnetics Research, Vol. 70, 281-296, 2007.
doi:10.2528/PIER07013002

5. He, Z. and R. S. Chen, "A novel marching-on-in-degree solver of time domain parabolic equation for transient EM scattering analysis," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4905-4910, 2016.
doi:10.1109/TAP.2016.2598157

6. Ergin, A., B. Shanker, and E. Michielssen, "Fast evaluation of three-dimensional transient wave field using diagonal translation operators," J. Comput. Phys., Vol. 146, No. 1, 157-180, 1998.
doi:10.1006/jcph.1998.5908

7. Yilmaz, E., D. S. Weile, J. M. Jin, and E. Michielssen, "A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 971-982, 2002.
doi:10.1109/TAP.2002.802094

8. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 40, No. 6, 661-665, 1993.
doi:10.1109/8.144600

9. Rao, S. M., D. A. Vechinski, and T. K. Sarkar, "Transient scattering by conducting cylinders — Implicit solution for the transverse electric case," Microw. Opt. Technol. Lett., Vol. 21, No. 2, 129-134, 1999.
doi:10.1002/(SICI)1098-2760(19990420)21:2<129::AID-MOP13>3.0.CO;2-5

10. Guo, X. Y., M. Y. Xia, and C. H. Chan, "Stable TDIE-MOT solver for transient scattering by two-dimensional conducting structures," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2149-2455, 2014.
doi:10.1109/TAP.2014.2303816

11. Tong, M. S. and P. C. Wang, "Stable solution of time-domain combined field integral equations for transient electromagnetic scattering by composite structures based on Nystr¨om scheme and laguerre function," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3239-3244, 2016.
doi:10.1109/TAP.2016.2560908

12. Rao, S. M. and T. K. Sarkar, "An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 831-834, 1993.
doi:10.1109/8.250460

13. Davies, P. J., "On the stability of time-marching schemes for the general surface electric-field integral equation," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1467-1473, 2002.
doi:10.1109/8.542071

14. Jung, H. and T. K. Sarkar, "Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects," Microw. Opt. Technol. Lett., Vol. 34, No. 4, 289-296, 2002.
doi:10.1002/mop.10440

15. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435

16. Guan, X. P., Y. Su, and S. G. Wang, "Stable and accelerated procedure to calculate transient scattering using electric field integral equation," IEE Electron. Lett., Vol. 43, No. 15, 794-795, 2007.
doi:10.1049/el:20070668