Vol. 76
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-12
Metal-Insulator Transition Property of HF-Doped VO2(M1) Films and Its Application for Reconfigurable Silicon Photonic Device
By
Progress In Electromagnetics Research Letters, Vol. 76, 133-139, 2018
Abstract
In this work, we report a novel phase change material: Hf-doped VO2(M1) with negligible thermal hysteresis width for low-power silicon photonic reconfigurable device applications. As dopant concentration rises from 0% to 3%, the material maintains the metal-insulator transition (MIT) property of VO2(M1) thin films, and the thermal hysteresis width significantly narrows from 7 ºC to <1 ºC, leading to a good control of material electrical and optical constants as a function of temperature. A ring resonator with Hf-doped VO2(M1) material partly deposited on the ring has been fabricated. Temperature dependent transmission spectrum of the device has been tested, which shows resonant peak shift due to the phase transition of Hf doped VO2(M1). Doping Hf makes this material become a promising candidate for a variety of silicon integrated reconfigurable photonic devices.
Citation
Taixing Huang, Qingyang Du, Tongtong Kang, Jianliang Xie, Long-Jiang Deng, Juejun Hu, and Lei Bi, "Metal-Insulator Transition Property of HF-Doped VO2(M1) Films and Its Application for Reconfigurable Silicon Photonic Device," Progress In Electromagnetics Research Letters, Vol. 76, 133-139, 2018.
doi:10.2528/PIERL18022602
References

1. Ryckman, J. D., V. D. Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, "Photothermal optical modulation of ultracompact hybrid Si-VO2 ring resonators," Opt. Express, Vol. 20, No. 12, 13215-13225, 2012.
doi:10.1364/OE.20.013215

2. Joushaghani, A., B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, "Sub-volt broadband hybrid plasmonic-vanadium dioxide switches," Appl. Phys. Lett., Vol. 102, No. 6, 325, 2013.
doi:10.1063/1.4790834

3. Chen, S., J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, "Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: A joint experimental and theoretical study," J. Phys. Chem. C, Vol. 118, No. 33, 18938-18944, 2014.
doi:10.1021/jp5056842

4. Mai, L. Q., B. Hu, T. Hu, W. Chen, and E. D. Gu, "Electrical property of Mo-doped VO2 nanowire array film by melting-quenching Sol-Gel Method," J. Phys. Chem. B, Vol. 110, No. 39, 19083-19086, 2006.
doi:10.1021/jp0642701

5. Manolatou, C. and M. Lipson, "All-optical silicon modulators based on carrier injection by twop-hoton absorption," J. Lightwave Technol., Vol. 24, No. 3, 1433-1438, 2006.
doi:10.1109/JLT.2005.863326

6. Thompson, D., O. Tantot, H. Jallageas, G. Tentzeris, and J. Papapolymerou, "Characterization of Liquid Crystal Polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz," IEEE T. Microw. Theory, Vol. 52, No. 4, 1343-1351, 2004.
doi:10.1109/TMTT.2004.825738

7. Oka, Y., T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, "Phase transition and V4+-V4+ pairing in VO2(B)," J. Solid State Chem., Vol. 105, No. 1, 271-278, 1993.
doi:10.1006/jssc.1993.1215

8. Liu, H., D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, "Sputtering deposition of sandwich-structured V2O5/Metal (V,W)/V2O5 multilayers for the preparation of high-performance thermally sensitive VO2 thin films with selectivity of VO2 (B) and VO2 (M) polymorph," ACS Appl. Mater. Inter., Vol. 8, No. 12, 7884-7890, 2016.
doi:10.1021/acsami.6b00391

9. Ryckman, J. D., V. Diez-Blanco, J. Nag, R. E. Marvel, and S. M. Weiss, "Photothermal optical modulation of ultracompact hybrid Si-VO2 ring resonators," Opt. Express, Vol. 20, No. 12, 13215-13225, 2012.
doi:10.1364/OE.20.013215

10. Nawrocka, M. S., T. Liu, X. Wang, and R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett., Vol. 89, 071110, 2006.
doi:10.1063/1.2337162

11. Nag, J., J. Ryckman, M. T. Hertkorn, B. K. Choi, and S. M. Weiss, "Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide," Proceedings of SPIE --- The International Society for Optical Engineering, March 2010.