Vol. 75
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-29
Effect of Superstrate on a Cylindrical Microstrip Antenna
By
Progress In Electromagnetics Research Letters, Vol. 75, 83-89, 2018
Abstract
A microstrip patch antenna can be readily installed on any non-planar surface due to its conformal property, and this feature enhances its applicability in many areas. Moreover, in some specific applications, it is desirable and mandatory to provide protection of antenna from the unfriendly surroundings. Therefore, the present work focuses on the antenna with a dielectric cover and analyzes its effect on directivity, gain, and bandwidth at various superstrate air gaps. Two antenna models of single and dual elements are considered here separately, and both are conformal to the cylindrical surface. The antenna parameters are studied under varying superstrate gaps with equal intervals up to a quarter wavelength under fixed cylindrical curvature. It is noted that there is a significant improvement of 6% and 12% in bandwidth at quarter wavelength gap as compared to simple single and dual antenna models without dielectric loading, respectively. Also, both the calculated and measured results show the other important constructive effect of superstrate on the antenna performance.
Citation
Prasanna Kumar Singh, and Jasmine Saini, "Effect of Superstrate on a Cylindrical Microstrip Antenna," Progress In Electromagnetics Research Letters, Vol. 75, 83-89, 2018.
doi:10.2528/PIERL18022801
References

1. Wong, K. L., Design of Nonplanar Microstrip Antennas and Transmission Lines, 16-35, John Wiley & Sons, Inc., New York, 1999.
doi:10.1002/0471200662.ch2

2. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, June 2017.
doi:10.2528/PIERM17022012

3. Bahl, I., P. Bhartia, and S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 2, 314-318, March 1982.
doi:10.1109/TAP.1982.1142766

4. Singh, P. K. and J. Saini, "Reconfigurable microstrip antennas conformal to cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, January 2018.
doi:10.2528/PIERL17111002

5. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical rectangular microstrip patch antenna loaded with a superstrate and an air gap using the electric surface current model," Progress In Electromagnetic Research, Vol. 67, 135-152, 2007.
doi:10.2528/PIER06080304

6. Meagher, C. J. and S. K. Sharma, "A wideband aperture-coupled microstrip patch antenna employing spaced dielectric cover for enhanced gain performance," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 314-318, September 1982.

7. Yang, H. Y. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 8, 860-863, July 1987.

8. Zaiki, A., N. A. M. Affendi, N. A. L. Alias, and N. M. Razali, "Flexible antennas based on natural rubber," Progress In Electromagnetics Research C, Vol. 61, 75-90, 2016.

9. Wong, K. L., Y. T. Cheng, and J. S. Row, "Resonance and radiation of a superstrate loaded cylindrical rectangular microstrip patch antenna with an air gap," Proc. Natl. Sci. Count. ROC (A), Vol. 17, 365-371, September 1993.

10. Singh, P. K. and J. Saini, "Performance analysis of superstrate loaded cylindrically conformal microstrip antenna on the varying curvature for Wimax applications," International Journal of Microwave and Optical Technology, Vol. 11, No. 6, 406-412, November 2016.

11. Singh, P. K. and J. Saini, "Mutual coupling analysis of dielectric coated microstrip antennas mounted on the cylindrical surface with varying inter element spacing," IEEE International Conference on Signal Processing and Communication, No. 3, 100-105, December 2016.

12. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., 811-876, John Wiley & sons, New York, 2005.