Vol. 76
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-14
Compact Microstrip Rotman Lens Using Chebyshev Impedance Transformers
By
Progress In Electromagnetics Research Letters, Vol. 76, 1-6, 2018
Abstract
A compact microstrip Rotman lens is proposed in this paper. The microstrip Rotman lens consists of a lens body and Chebyshev impedance transformers. The Chebyshev impedance transformers are used as beam ports, array ports and dummy ports. Compared to the traditional linear tapered transition, the Chebyshev impedance transformer is shorter, which leads to the size reduction and insertion loss improvement for the Rotman lens. An X-band 4×7 Rotman lens using Chebyshev impedance transformers is designed and fabricated. Compared to a traditional Rotman lens, the proposed Rotman lens shows a size reduction of about 56% and an insertion loss improvement at 10 GHz. The measured results demonstrate that better than 15 dB return loss throughout the bandwidth from 8 to 12 GHz is obtained.
Citation
Qiuyan Liang, Bao-Hua Sun, Gaonan Zhou, and Jianfeng Li, "Compact Microstrip Rotman Lens Using Chebyshev Impedance Transformers," Progress In Electromagnetics Research Letters, Vol. 76, 1-6, 2018.
doi:10.2528/PIERL18030702
References

1. Sinha, Nirmalendu Bikas, R.-N. Bera, and M. Mitra, "Digital array MIMO radar and its performance analysis," Progress In Electromagnetics Research C, Vol. 4, 25-41, 2008.
doi:10.2528/PIERL08050205

2. Hong, T., M.-Z. Song, and X.-Y. Sun, "Design of a sparse antenna array for communication and direction finding applications based on the Chinese remainder theorem," Progress In Electromagnetics Research, Vol. 98, 119-136, 2009.
doi:10.2528/PIER09091703

3. Rotman, W. and R. F. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas Propagation, Vol. 11, No. 6, 623-632, Nov. 1963.
doi:10.1109/TAP.1963.1138114

4. Attaran, A., R. Rashidzadeh, and A. Kouki, "60 GHz low phase error Rotman lens combined with wideband microstrip antenna array using LTCC technology," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5172-5180, Dec. 2016.
doi:10.1109/TAP.2016.2618479

5. Attaran, A. and S. Chowdhury, "Fabrication of a 77 GHz Rotman lens on a high resistivity silicon wafer using lift-off process," International Journal of Antennas and Propagation, 1-9, article ID: 471935, 2014.

6. Attaran, A., R. Rashidzadeh, and R. Muscedere, "Rotman lens combined with wide bandwidth antenna array for 60 GHz RFID applications," Int. J. Microw. Wireless Technol., Vol. 9, No. 1, 1-7, Aug. 2015.

7. Cheng, Y. J., et al. "Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2504-2513, Aug. 2008.
doi:10.1109/TAP.2008.927567

8. Lee, W., J. Kim, C. S. Cho, and Y. J. Yoon, "Beamforming lens antenna on a high resistivity silicon wafer for 60 GHz WPAN," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 706-713, Dec. 2010.
doi:10.1109/TAP.2009.2039331

9. Vo Dai, T. K., T. Nguyen, and O. Kilic, "A compact microstrip Rotman lens design," Radio Science Meeting, 1-2, United States National Committee of URSI National, Boulder, USA, 2017.

10. Tekkouk, K., M. Ettorre, L. Le Coq, and R. Sauleau, "Multi-beam SIW slotted waveguide antenna system fed by a compact dual-layer Rotman lens," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 504-514, Nov. 2016.
doi:10.1109/TAP.2015.2499752

11. Young, L., "Stepped-impedance transformers and filter prototypes," IRE Trans. Microwave Theory Tech., Vol. 10, No. 5, 339-359, Sep. 1962.
doi:10.1109/TMTT.1962.1125523