Vol. 76
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-18
Experimental Verification of Quadrupole Model of the Electric Field of a Rotating Magnet
By
Progress In Electromagnetics Research Letters, Vol. 76, 21-26, 2018
Abstract
We performed an experiment to verify quadrupole model of the electric field of a rotating magnet. It is found that the rotating magnet insulated from the earth and enclosed in a conductive insulated screen induces the potential difference across an air capacitor arranged on the outside the screen. The field of an electric quadrupole cannot penetrate through the screen; therefore the electric field detected outside the screen has the source of another nature. The field observed in the experiment can be explained by arising of a fictitious electric charge upon rotating of the magnet in accordance with the transformations of the electromagnetic field in the theory of relativity.
Citation
Vladimir Borisovich Timofeev, and Tamara Egorovna Timofeeva, "Experimental Verification of Quadrupole Model of the Electric Field of a Rotating Magnet," Progress In Electromagnetics Research Letters, Vol. 76, 21-26, 2018.
doi:10.2528/PIERL18030901
References

1. Barnett, S. J., "On electromagnetic induction and relative motion," Phys. Rev., Vol. 35, No. 5, 323-336, 1912.

2. Kennard, E. H., "The effect of dielectrics on unipolar induction," Phys. Rev., Vol. 1, No. 5, 355-359, 1913.
doi:10.1103/PhysRev.1.355

3. Pegram, G. B., "Unipolar induction and electron theory," Phys. Rev., Vol. 10, No. 6, 591-600, 1917.
doi:10.1103/PhysRev.10.591

4. Wilson, M. and H. A. Wilson, "On the electric effect of rotating a magnetic insulator in a magnetic field," Proc. Roy. Soc., Vol. 89(a), No. 608, 99-106, 1913.
doi:10.1098/rspa.1913.0067

5. Hertzberg, J. B., S. R. Bickman, M. T. Hummon, D. Krause, Jr., S. K. Peck, and L. R. Hunter, "Measurement of the relativistic potential difference across a rotating magnetic dielectric cylinder," AJP, Vol. 69, No. 6, 648-654, 2001.

6. Timofeev, V. B. and T. E. Timofeeva, "Experiment on measurement of the stationary electric-field of a rotating magnet," Preprint of Institute of Cosmic Physics Research and Aeronomy, SB RAS99-1, 1-35, Yakutsk-Nerungri, 1999.

7. Timofeev, V. B. and T. E. Timofeeva, "Some properties of the electric field of the magnetic rotator," Herald of the North-Eastern Federal University, Vol. 9, No. 3, S.39-42, 2012.

8. Timofeev, V. B. and T. E. Timofeeva, "Experimental research of the electric field potential of a rotating magnetized sphere," Progress In Electromagnetics Research Letters, Vol. 45, 19-24, 2014.
doi:10.2528/PIERL13102108

9. Misiucenko, I. L., "Experimental study of the electric field of a ring magnet rotating about the magnetization axis,", http://electricaleather.com/d/358095/d/elektricheskoe-pole-vraschayuschegosya-kolcevogo-magnita.pdf, 2014.

10. Krivchenkov, V. D., "Electromagnetic field of a rotating magnetized sphere," Vestnik MSU, Vol. 2, 53-55, 1949.

11. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 620, Nauka, Moscow, 1982.

12. McDonald, K. T., "Unipolar induction via a rotating magnetized sphere,", Joseph Henri Laboratories, Princeton University, Princeton, NJ 08544, November 13, 2012.

13. Timofeev, V. B. and T. E. Timofeeva, "Effect of penetration of the electric field of a rotating permanent magnet through an electrostatic shield," Coll. of Scientific Proceedings. Problems of Development and Prospects of the Development of South Yakutia Region, Neryungri, 111-113, 2001.

14. Schiff, L. I., "A question in general relativity," Proc. Natl. Acad. Sci., U.S. 25, 391-395, 1939.

15. Alfven, G. and K.-G. Felthammar, Cosmic Electrodynamics, Mir, Moscow, 1967 (in Russian).