Vol. 76
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-04
High Gain and Wideband Stacked Patch Antenna for S-Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 76, 97-104, 2018
Abstract
In this paper design of a stacked circular patch antenna is presented for high gain and wideband applications. The main radiator of this design is a circular patch antenna, which is fed by using a coupling mechanism. Wide impedance bandwidth of 40% and linear polarization of gain 9.5 dBi at the center frequency of 2.4 GHz is measured. The antenna gain is further increased by using regular period of N circular patch directors on top of the main radiator. The first director is placed in a distance of about one half of the wavelength and the next directors are placed with regular distances of about a quarter of the wavelength. The antenna gain is tuned and increased with the number of the directors in the range of 9.5-16.5 dBi with N up to seventeen. The antenna impedance change due to the added directors is adjusted by using two parasitic circular patches between the main radiator and the first director. A prototype antenna is designed, manufactured and measured. The antenna operation can be further extended using dual feed geometry in which we can obtain two orthogonal radiation patterns or circular polarizations.
Citation
Ali Khaleghi, Seyed Sajad Ahranjan, and Ilangko Balasingham, "High Gain and Wideband Stacked Patch Antenna for S-Band Applications," Progress In Electromagnetics Research Letters, Vol. 76, 97-104, 2018.
doi:10.2528/PIERL18031505
References

1. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3474-3481, 2014.
doi:10.1109/TAP.2014.2320755

2. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic bandgap (EBG) resonator antenna using a frequency selective surface (FSS) superstrate," Microw. Opt. Technol. Lett., Vol. 43, No. 6, 462-467, Dec. 2004.
doi:10.1002/mop.20502

3. Zhao, T., D. R. Jackson, J. T. Williams, H.-Y. D. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas --- Part I: Metal patch design," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3505-3514, Nov. 2005.
doi:10.1109/TAP.2005.858579

4. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

5. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High gain subwavelength resonant cavity antennas based on metamaterial ground planes," Proc. Inst. Elect. Eng., Antennas Propag., Vol. 153, No. 1, 1-6, Feb. 2006.
doi:10.1049/ip-map:20050090

6. Kelly, J. R., T. Kokkinos, and A. P. Feresidis, "Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2817-2825, Sep. 2008.
doi:10.1109/TAP.2008.928791

7. Khaleghi, A. and M. Kamyab, "Reconfigurable single port antenna with circular polarization diversity," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 555-559, 2009.
doi:10.1109/TAP.2008.2011394

8. Padhi, S. K., N. C. Karmakar, Sr., C. L. Law, S. Aditya, and Sr., "A dual polarized aperture coupled circular patch antenna using a C-shaped coupling slot," IEEE Trans. Antennas Propag., Vol. 51, No. 12, 3295-3298, 2003.
doi:10.1109/TAP.2003.820947

9. Guha, D., C. Sarkar, S. Dey, and C. Kumar, "Wideband high gain antenna realized from simple unloaded single patch," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4562-4566, Oct. 2015.
doi:10.1109/TAP.2015.2456942