Vol. 76

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-05-14

A Novel Planar Wireless Power Transfer System with Distance-Insensitive Characteristics

By Meng Wang, Jing Feng, Yue Fan, Minghui Shen, Jie Liang, and Yanyan Shi
Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018
doi:10.2528/PIERL18032301

Abstract

Unlike conventional systems in which two identical resonant loops are employed, a pair of novel planar loops is developed for wireless power transfer. The proposed transmitting and receiving coils have different distances between turns while the wire length is the same. The effect of mutual inductance on transfer efficiency is analyzed. The mutual inductance of the proposed loops is more uniform than the conventional one, which is helpful for suppressing frequency splitting at closer transfer distance. Moreover, the power transfer performance is enhanced at longer distance. Additionally, an experimental prototype is fabricated to verify the distance insensitive characteristic of the proposed system.

Citation


Meng Wang, Jing Feng, Yue Fan, Minghui Shen, Jie Liang, and Yanyan Shi, "A Novel Planar Wireless Power Transfer System with Distance-Insensitive Characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
doi:10.2528/PIERL18032301
http://www.jpier.org/PIERL/pier.php?paper=18032301

References


    1. Poon, A. S. Y., "A general solution to wireless power transfer between two circular loop," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
    doi:10.2528/PIER14071201

    2. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, 4809-4817, 2016.
    doi:10.1109/TPEL.2015.2446501

    3. Badawe, M. E. and O. M. Ramahi, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.

    4. Hui, S. Y. R., W. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, 4500-4511, 2014.
    doi:10.1109/TPEL.2013.2249670

    5. Chu, Y. C., N. S. Artan, D. Czarkowski, C. L. R. Chang, and J. Chao, "High-efficiency high-current drive power converter IC for wearable medical devices," IEICE Electron. Express, Vol. 12, 2015.
    doi:10.1587/elex.12.20150953

    6. Jang, B. J., S. Lee, and H. Yoon, "HF-band wireless power transfer system: Concept, issues, and design," Progress In Electromagnetics Research, Vol. 124, 211-231, 2012.
    doi:10.2528/PIER11120511

    7. Liu, F. X., Y. Yang, D. Jiang, X. Ruan, and X. Chen, "Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales," IEEE Trans. Power Electron., Vol. 32, 3240-3250, 2017.
    doi:10.1109/TPEL.2016.2581840

    8. Kim, J., W. S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
    doi:10.2528/PIER13012118

    9. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
    doi:10.2528/PIER13061711

    10. Lee, W. S., K. S. Oh, and J. W. Yu, "Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance," IEEE Trans. Antennas Propagat., Vol. 62, 936-940, 2014.
    doi:10.1109/TAP.2013.2290549

    11. Zhang, X. Y., C. D. Xue, and J. K. Lin, "Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression," IEEE Trans. Microw. Theory Tech., 1-10, 2017.

    12. Niu, W., W. Gu, J. Chu, and A. Shen, "Frequency splitting patterns in wireless power relay transfer," Circuits Devices Syst. Lett., Vol. 8, 561-567, 2014.
    doi:10.1049/iet-cds.2013.0440

    13. Zhang, Y. M., Z. M. Zhao, and K. N. Chen, "Frequency-splitting analysis of four-Coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, 2436-2445, 2014.
    doi:10.1109/TIA.2013.2295007

    14. Yeo, T. D., D. S. Kwon, S. T. Khang, and J. W. Yu, "Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank," IEEE Trans. Power Electron., Vol. 32, 471-478, 2017.
    doi:10.1109/TPEL.2016.2523121

    15. Lee, K. and D. H. Cho, "Analysis of wireless power transfer for adjustable power distribution among multiple receivers," IEEE Antennas Wireless Propag. Lett., Vol. 14, 950-953, 2015.
    doi:10.1109/LAWP.2015.2388711

    16. Kim, J., D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Trans. Ind. Electron., Vol. 62, 2807-2813, 2015.
    doi:10.1109/TIE.2014.2365751

    17. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, and Q. Wu, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, 6097-6107, 2015.
    doi:10.1109/TPEL.2014.2387835

    18. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 60, 350-359, 2013.
    doi:10.1109/TIE.2011.2177611