Vol. 78
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-09-17
A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application
By
Progress In Electromagnetics Research Letters, Vol. 78, 105-110, 2018
Abstract
A phase diversity printed-dipole antenna element for patterns selectivity array application is designed in this paper. The antenna element consists of a printed dipole structure and two varactors. By changing the control voltage of each element, various radiation phases in the far field of each element is realized, that is, the peak gain direction of the array is changed. With this method, the structure designed is simple, and only two varactors are loaded. To verify the feasibility, an antenna prototype is experimentally characterized, which validates the proposed concept. The impedance bandwidth of array is 22.2% (3.2~4.0 GHz), in which the peak gain direction can be scanned during angles from -θ to +θ across broadside (θ = 13°~18° at different frequencies). It can be applied to phased antenna system.
Citation
Fu-Kun Sun Fu-Shun Zhang Chao-Qiang Feng , "A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application," Progress In Electromagnetics Research Letters, Vol. 78, 105-110, 2018.
doi:10.2528/PIERL18072201
http://www.jpier.org/PIERL/pier.php?paper=18072201
References

1. Row, J. S. and Y. J. Huang, "Reconfigurable antenna with switchable broadside and conical beams and switchable linear polarized patterns," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3752-3756, Jul. 201.
doi:10.1109/TAP.2018.2820325

2. Lin, W., H. Wong, and R. W. Ziolkowski, "Wideband pattern-reconfigurable antenna with switchable broadside and conical beams," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2638-2641, 2017.
doi:10.1109/LAWP.2017.2738101

3. Qin, P. Y., Y. J. Guo, A. R. Weily, and C. H. Liang, "A pattern reconfigurable U-slot antenna and its applications in MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 516-528, Feb. 2012.
doi:10.1109/TAP.2011.2173439

4. Fayad, H. and P. Record, "Multi-feed dielectric resonator antenna with reconfigurable radiation pattern," Progress In Electromagnetics Research, Vol. 76, 341-356, 2007.
doi:10.2528/PIER07071204

5. Alam, M. S. and A. Abbosh, "Planar pattern reconfigurable antenna with eight switchable beams for WiMax and WLAN applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 10, 1030-1035, Jul. 2016.
doi:10.1049/iet-map.2015.0647

6. Yang, Y., R. B. V. B. Simorangkir, X. Zhu, K. Esselle, and Q. Xue, "A novel boresight and conical pattern reconfigurable antenna with the diversity of 360° polarization scanning," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5747-5756, Nov. 2017.
doi:10.1109/TAP.2017.2754412

7. Chen, S. L., P. Y. Qin, W. Lin, and Y. J. Guo, "Pattern-reconfigurable antenna with five switchable beams in elevation plane," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 454-457, Mar. 2018.
doi:10.1109/LAWP.2018.2794990

8. Deng, W. Q., X. S. Yang, C. S. Shen, J. Zhao, and B. Z. Wang, "A dual-polarized pattern reconfigurable Yagi patch antenna for microbase stations," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5095-5102, Oct. 2017.
doi:10.1109/TAP.2017.2741022

9. Jusoh, M., T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, "Reconfigurable four-parasitic-elements patch antenna for high-gain beam switching application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 79-82, 2014.
doi:10.1109/LAWP.2013.2296491

10. Zainarry, S. N. M., N. Nguyen-Trong, and C. Fumeaux, "A frequency- and pattern-reconfigurable two-element array antenna ," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 617-620, Apr. 2018.
doi:10.1109/LAWP.2018.2806355