Vol. 80
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-12-05
Wideband Mushroom Composite Right/Left Handed Transmission Line Antenna with Cavity-Backed Substrate Integrated Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 80, 83-89, 2018
Abstract
A wideband composite right/left handed transmission line (CRLH-TL) antenna with cavity-backed substrate integrated waveguide (SIW) is proposed in this letter. This proposed antenna consists of a 2×2 array of mushroom unit cells, feeding line and cavity-backed SIW. By introducing SIW structure both impedance and gain of the antenna are improved. The proposed antenna has average gain of 7 dBi (peak measured gain 9.5 dBi), wide -10 dB impedance matching bandwidth of 55% from 5.2 GHz to 8.3 GHz, small size of 40 mm×50×4 mm, high integration ability, and reduced back radiation.
Citation
Hui-Fen Huang Sun Shuai , "Wideband Mushroom Composite Right/Left Handed Transmission Line Antenna with Cavity-Backed Substrate Integrated Waveguide," Progress In Electromagnetics Research Letters, Vol. 80, 83-89, 2018.
doi:10.2528/PIERL18090505
http://www.jpier.org/PIERL/pier.php?paper=18090505
References

1. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2516-2526, 2006.
doi:10.1109/TMTT.2006.875807

2. Honari, M. M., et al., "A dual-band low-profile aperture antenna with substrate-integrated waveguide grooves," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1561-1566, 2016.
doi:10.1109/TAP.2016.2526610

3. Lai, A., et al., "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3868-876, 2007.

4. Lee, J., "Zeroth order resonance loop antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 994-997, 2007.
doi:10.1109/TAP.2007.891875

5. Gong, J. Q. and Q. X. Chu, "Miniaturized microstrip bandpass filter, using coupled SCRLH zeroth-order resonators," Microwave and Optical Technology Letters, Vol. 51, No. 12, 2985-2989, 2009.
doi:10.1002/mop.24808

6. Sievenpiper, D. F., et al., "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

7. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703

8. Kang, H. and S.-O. Park, "Mushroom meta-material based substrate integrated waveguide cavity backed slot antenna with broadband and reduced back radiation," IET Microwaves, Antennas & Propagation, Vol. 10, No. 14, 1598-1603, 2016.
doi:10.1049/iet-map.2016.0056

9. Liu, W., et al., "Metamaterial-based low-profile broadband mushroom antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788

10. Wu, Z., et al., "Dual-band antenna integrating with rectangular mushroom-like superstrate for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1269-1272, 2015.

11. Jia, Y., et al., "Low-RCS, high-gain, and wideband mushroom antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 277-280, 2015.
doi:10.1109/LAWP.2014.2363071

12. Amani, N. and A. Jafargholi, "Zeroth-order and TM10 modes in one-unit cell CRLH mushroom resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1396-1399, 2015.
doi:10.1109/LAWP.2015.2407955

13. Liu, C., Q. Chu, and J. Huang, "A planar D-CRLH and its application to bandstop filter and leaky-wave antenna," Progress In Electromagnetics Research Letters, Vol. 19, 93-102, 2010.
doi:10.2528/PIERL10101701

14. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," International Microwave Symposium, Vol. 53, No. 1, 66-73, 2005.