Vol. 80
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-08
Conformal Wideband Microstrip Patch Antennas on Cylindrical Platforms
By
Progress In Electromagnetics Research Letters, Vol. 80, 1-6, 2018
Abstract
A conformal wideband antenna is investigated and compared with its planar counterpart. First, a planar U-slot patch with about 43% fractional impedance bandwidth is designed. Then, it is mounted on a conformal cylindrical structure. It is observed that the fractional impedance bandwidth of the resulting conformal antenna increases to 50%, when it is bent along the H-plane. It is also found that the cross polarization discrimination of the antenna is improved. The effects of the arc angle and radius of the cylinder on the impedance bandwidth and radiation characteristics of the antenna are extensively studied. The conformal antenna was fabricated on a thin film of Kapton and tested. The measured and simulated results closely resembled each other.
Citation
Tanzeela Mitha, and Maria Pour, "Conformal Wideband Microstrip Patch Antennas on Cylindrical Platforms," Progress In Electromagnetics Research Letters, Vol. 80, 1-6, 2018.
doi:10.2528/PIERL18100906
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley, Hoboken, NJ, 2016.

2. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950

3. Weigand, S., G. H. Huff, K. H. Pan, and J. T. Bernhard, "Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 457-468, Mar. 2003.
doi:10.1109/TAP.2003.809836

4. Tong, K.-F., K.-M. Luk, K.-F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 954-960, Jun. 2000.
doi:10.1109/8.865229

5. Salonen, P. and Y. Rahmat-Samii, "Textile antennas: Effects of antenna bending on input matching and impedance bandwidth," IEEE Aerosp. Electron. Syst. Mag., 10-14, Mar. 2007.
doi:10.1109/MAES.2007.340501

6. Song, L. and Y. Rahmat-Samii, "A systematic investigation of rectangular patch antenna bending effects for wearable applications," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2219-2228, May 2018.
doi:10.1109/TAP.2018.2809469

7. Liu, F.-X., T. Kaufmann, Z. Xu, and C. Fumeaux, "Wearable applications of quarter-wave patch and half-mode cavity antennas," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1478-1481, 2015.
doi:10.1109/LAWP.2014.2383399

8. Ashyap, A., Z. Abidin, S. Dahlan, H. Majid, M. Kamarudin, G. Oguntala, R. A. Abd-Alhameed, and J. Noris, "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, Vol. 6, 35214-35222, Jun. 2018.
doi:10.1109/ACCESS.2018.2847280

9. Macon, C. A., K. D. Trott, and L. C. Kempel, "A practical approach to modeling doubly curved conformal microstrip antennas," Progress In Electromagnetics Research, Vol. 40, 295-314, 2003.
doi:10.2528/PIER02122903

10. Krowne, C. M., "Cylindrical-rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 31, No. 1, 194-199, Jan. 1983.
doi:10.1109/TAP.1983.1143000

11. Luk, K., K.-F. Lee, and J. S. Dahele, "Analysis of the cylindrical rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 143-147, Feb. 1989.
doi:10.1109/8.18699

12. "ANSYS high frequency electromagnetic field simulator HFSS (version 18.1),", Canonsburg, PA.

13. Ludwig, A., "The definition of cross polarization," IEEE Trans. Antennas Propag., Vol. 21, No. 1, 116-119, Jan. 1973.
doi:10.1109/TAP.1973.1140406