Vol. 82
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-12
Impact of External DC Magnetic Bias Field and Frequency on the Bistability Features of a Nonlinear Microwave Meta-Atom
By
Progress In Electromagnetics Research Letters, Vol. 82, 81-87, 2019
Abstract
In this paper, we present our experimental study of the effect of the external DC magnetic bias field on the nonlinear properties of meta-atom loaded with ferrite elements of different shapes. It is demonstrated experimentally that the adjustment of the resonance frequency of the meta-atom loaded with the ferrite elements of different shapes is possible not only by the input microwave power but also by the external DC magnetic bias field. It is shown that as the external DC magnetic bias field is increased to a certain value, the resonance curve of the nonlinear meta-atom demonstrates bistability. In addition, we achieve significant enhancement of the meta-atom nonlinearity using the nonlinear properties of both ferrite and varactor diode.
Citation
Aleksey A. Girich, and Sergey I. Tarapov, "Impact of External DC Magnetic Bias Field and Frequency on the Bistability Features of a Nonlinear Microwave Meta-Atom," Progress In Electromagnetics Research Letters, Vol. 82, 81-87, 2019.
doi:10.2528/PIERL18112701
References

1. Gibbs, H. M., S. L. McCall, and T. N. C. Venkatesan, "Differential gain and bistability using a sodium-filled Fabry-Perot interferometer," Phys. Rev. Lett., Vol. 36, No. 19, 1135-1138, 1976.
doi:10.1103/PhysRevLett.36.1135

2. Ding, Y., C. Xue, Y. Sun, H. Jiang, Y. Li, H. Li, and H. Chen, "Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom," Optics Express, Vol. 20, No. 22, 24813-24818, 2012.
doi:10.1364/OE.20.024813

3. Tarapov, S. I., Yu. P. Machekhin, and A. S. Zamkovoy, Magnetic Resonance for Optoelectronic Materials Investigating, 144, ISBN 978-966-8604-42-3, Collegium, Kharkov, 2008.

4. Tuz, V. R., S. L. Prosvirnin, and L. A. Kochetova, "Optical bistability involving planar metamaterials with broken structural symmetry," Phys. Rev. B, Vol. 82, 233402, 2010.
doi:10.1103/PhysRevB.82.233402

5. Schurig, D., J. J.Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681

6. Girich, A. and S. Tarapov, "Left-handed properties of composite ferrite/semiconductor medium oriented in staggered order," Terahertz and Mid Infrared Radiation, 44-47, 2011.

7. Poutrina, E., D. Huang, and D. R. Smith, "Analysis of nonlinear electromagnetic metamaterials," New Journal of Physics, Vol. 12, 1-27, 2010.

8. Huang, D., E. Poutrina, and D. R. Smith, "Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies," Appl. Phys. Lett., Vol. 96, 104104, 2010.
doi:10.1063/1.3356223

9. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

10. Vertiy, A. A., S. P. Gavrilov, and S. I. Tarapov, "The transmission and bistability of a nonlinear quasioptical resonator in ESR-conditions in ruby," International Journal of Infrared and Millimeter Waves, Vol. 13, No. 9, 1403-1419, 1992.
doi:10.1007/BF01009997