Vol. 82
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-10
Miniaturized Microstrip Dual-Band Branch-Line Crossover with Two Inner Open Stubs
By
Progress In Electromagnetics Research Letters, Vol. 82, 59-64, 2019
Abstract
In this letter, a microstrip dual-band band-pass crossover is proposed. By reducing the number of inner open stubs, miniaturization of a window-shaped crossover without reducing bandwidth can be achieved. An electromagnetic simulation and measurements are used to validate the compact (0.35λ × 0.35λ) crossover with a wide bandwidth.
Citation
Yang Cui Hitoshi Hayashi , "Miniaturized Microstrip Dual-Band Branch-Line Crossover with Two Inner Open Stubs," Progress In Electromagnetics Research Letters, Vol. 82, 59-64, 2019.
doi:10.2528/PIERL19013101
http://www.jpier.org/PIERL/pier.php?paper=19013101
References

1. Wang, Y., A. M. Abbosh, and B. Henin, "Wideband microwave crossover using double vertical microstrip-CPW interconnect," Progress In Electromagnetics Research C, Vol. 32, 109-122, 2012.
doi:10.2528/PIERC12071903

2. Wight, J. S., W. J. Chudobiak, and V. Makios, "A microstrip and stripline crossover structure," IEEE Trans. Microw. Theory Tech., Vol. 24, No. 5, 270, May 1976.
doi:10.1109/TMTT.1976.1128838

3. Yeung, S., W. C. Ip, and K. K. M. Cheng, "A novel dual-band crossover design with enhanced frequency band ratio and operating bandwidth," Proc. Asia-Pacific Microwave Conf., 892-895, Melbourne, Australia, Dec. 2011.

4. Lee, Z. W. and Y. H. Pang, "Compact planar dual-band crossover using two-section branch-line coupler," Electron. Lett., Vol. 48, No. 21, 1348-1349, Oct. 2012.
doi:10.1049/el.2012.2454

5. Shao, J., H. Ren, B. Arigong, C. Li, and H. Zhang, "A fully symmetrical crossover and its dual-frequency application," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2410-2416, Aug. 2012.
doi:10.1109/TMTT.2012.2198229

6. Tang, C. W., "Design of a microstrip dual-band crossover with asymmetrical shaped transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 25, No. 9, 588-590, Sep. 2015.