Vol. 83
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-04-22
Quad-Band Multilayer SIW Filter with High Selectivity and Controllable Bandwidths
By
Progress In Electromagnetics Research Letters, Vol. 83, 133-138, 2019
Abstract
This work presents an approach for the design of a quad-band substrate integrated waveguide (SIW) bandpass filter based on multilayer process. TE101/TE102/TE103/TE104 modes are used to characterize the four passbands, respectively. Firstly, the locations and band ratios of the passbands are chosen based on the effective width-length of the SIW resonator and its ratio. Then, vertical couplings of the modes and source-load are designed on the middle metal layers between the dielectric layers, which provides a relatively independent bandwidth tuning and high selectivity. To demonstrate the proposed design method, a quad-band SIW bandpass filter is fabricated and measured. Experimental results agree well with the simulated counterpart. The proposed quad-band SIW filter presents good selectivity and compact size.
Citation
Ding-Hong Jia, Jianqin Deng, Yangping Zhao, and Ke Wu, "Quad-Band Multilayer SIW Filter with High Selectivity and Controllable Bandwidths," Progress In Electromagnetics Research Letters, Vol. 83, 133-138, 2019.
doi:10.2528/PIERL19021801
References

1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 593-596, Feb. 2003.
doi:10.1109/TMTT.2002.807820

2. Xu, S. S., K. X. Ma, F. Y. Meng, and K. S. Yeo, "Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 217-219, Feb. 2015.
doi:10.1109/LMWC.2015.2400916

3. Lv, D.-D., L. Meng, and Z. Zou, "Miniaturized HMSIW dual-band filter based on CSRRs and microstrip open-stubs," Progress In Electromagnetics Research Letters, Vol. 77, 97-102, 2018.
doi:10.2528/PIERL18030202

4. Esmaeili, M. and J. Bornemann, "Substrate integrated waveguide triple-passband dual-stopband filter using six cascaded singlets," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 7, 439-441, Jul. 2014.
doi:10.1109/LMWC.2014.2316242

5. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2569-2578, Dec. 2007.
doi:10.1109/TMTT.2007.909603

6. Chen, B. J., T. M. Shen, and R. B. Wu, "Dual-band vertically stacked laminated waveguide filter design in LTCC technology," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 6, 1554-1562, Jun. 2009.
doi:10.1109/TMTT.2009.2020833

7. Shen, W., W. Y. Yin, and X.W. Sun, "Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 418-420, Aug. 2011.
doi:10.1109/LMWC.2011.2158412

8. Wu, Y.-D., G. H. Li, W. Yang, and T. Mou, "A novel dual-band SIW filter with high selectivity," Progress In Electromagnetics Research Letters, Vol. 60, 81-88, 2016.
doi:10.2528/PIERL16032401

9. Zhou, K., C. X. Zhou, and W.Wu, "Substrate-integrated waveguide dual-mode dual-band bandpass filters with widely controllable bandwidth ratios," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 10, 3801-3812, Oct. 2017.
doi:10.1109/TMTT.2017.2694827

10. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, 2005.

11. Chuang, C. C., H. H. Lin, and C. L. Wang, "Design of dual-mode SIW cavity filters," 2007 IEEE Region 10 Conference, Taipei, Taiwan, Oct. 2007.

12. Almalkawi, M., L. Zhu, and V. Devabhaktuni, "Dual-mode substrate integrated waveguide (SIW) bandpass filters with an improved upper stopband performance," 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, Houston, TX, USA, Oct. 2011.