Vol. 89
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-16
Gap-Coupled Dual-Band Evanescent-Mode Substrate Integrated Band-Pass Filter Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 89, 53-59, 2020
Abstract
A single-layer substrate integrated waveguide (SIW) is developed to design a dual-band band-pass filter (BPF) operating below the cut-off frequency of the SIW, known as evanescent-mode excitation. Gap-coupled excitation is used to demonstrate multiple transmission poles (TPs) and transmission zeros (TZs) below the cut-off frequency of the SIW. The structure is reported to realize two independent evanescent-mode poles on a single-layer SIW which reduces the size and complexity of the structure compared to those of the recent multi-layer evanescent-mode structures. Lumped-element equivalent circuit is employed to describe the EM behavior of the structure for TZs and TPs realization. A compact single-layer dual-band SIW filter is fabricated based on the proposed structure. A good agreement is reported between the measured and simulated performances.
Citation
Amir Nosrati, Mahmoud Mohammad-Taheri, and Mehdi Nosrati, "Gap-Coupled Dual-Band Evanescent-Mode Substrate Integrated Band-Pass Filter Waveguide," Progress In Electromagnetics Research Letters, Vol. 89, 53-59, 2020.
doi:10.2528/PIERL19101302
References

1. Punitha, L., S. P. Sugumar, and P. H. Rao, "Analysis of RF transceiver for 5G applications," Asia-Pacific Radio Sci. Conf., Mar. 2019.

2. Amari, S., U. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 8, 1969-1978, Aug. 2002.
doi:10.1109/TMTT.2002.801348

3. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303

4. Sirci, S., et al. "Design and multi-physics analysis of direct and cross-coupled SIW combline filters using electric and magnetic couplings," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 4341-4354, Dec. 2015.
doi:10.1109/TMTT.2015.2495287

5. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, Sep. 2009.
doi:10.1109/TMTT.2009.2027156

6. Nosrati, M., Z. Abbasi, and M. Daneshmand, "Single-layer substrate-integrated waveguide evanescent-mode filter," IEEE Microw. Wirel. Components Lett., Vol. 28, No. 12, 1107-1109, Dec. 2018.
doi:10.1109/LMWC.2018.2875313

7. Nosrati, M. and M. Daneshmand, "Substrate integrated waveguide L-shaped iris for realization of transmission zero and evanescent-mode pole," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 7, 2310-2320, Jul. 2017.
doi:10.1109/TMTT.2017.2679011

8. Nosrati, M. and M. Daneshmand, "Gap-coupled excitation for evanescent-mode substrate integrated waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 6, 3028-3035, Jun. 2018.
doi:10.1109/TMTT.2018.2818155

9. Dong, Y. and T. Itoh, "Miniaturized dual-band substrate integrated waveguide filters using complementary split-ring resonators," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, Jun. 2011.

10. Wu, L.-S., J.-F. Mao, W.-Y. Yin, and Y.-X. Guo, "A dual-band filter using Stepped-Impedance Resonator (SIR) embedded into Substrate Integrated Waveguide (SIW)," Proc. IEEE Elect. Design Adv. Packag. Syst. Symp., 1-4, Dec. 2010.

11. Xu, S., K. Ma, F. Meng, and K. S. Yeo, "Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 217-219, Apr. 2015.
doi:10.1109/LMWC.2015.2400916