Vol. 88
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-03
3D Printed Large Bandwidth New Yagi-Uda Antenna
By
Progress In Electromagnetics Research Letters, Vol. 88, 129-135, 2020
Abstract
A new design of a printed Yagi-Uda antenna is presented. The main idea to be directive and large bandwidth is to replace the driver element associated with its reflector by a directional curved disk monopole, and the directors by flat disks monopole. It requires the use of a ground plane to simplify feeding. The study of configuration of the dimensions, the number and the dispositions of the directors elements allows a return loss less than -10 dB over 20% bandwidth centered at 5 GHz. Also, a high gain of 13 dBi is obtained with a maximum radiation direction at 26° elevation from the azimuth due to a limitation of the ground plane. This gain remains superior to 10 dBi over the bandwidth. The simulation results are in good agreement with the measurements for return losses, radiation patterns, and gain.
Citation
Asmae Hachi, Hassan Lebbar, and Mohamed Himdi, "3D Printed Large Bandwidth New Yagi-Uda Antenna," Progress In Electromagnetics Research Letters, Vol. 88, 129-135, 2020.
doi:10.2528/PIERL19101303
References

1. Soboll, P., V. Wienstroer, and R. Kronberger, "Stacked Yagi-Uda array for 2.45-GHz wireless energy harvesting," IEEE Microwave Magazine, Vol. 16, No. 1, 67-73, Feb. 2015.
doi:10.1109/MMM.2014.2367858

2. Choe, H. and S. Lim, "Directivity and diversity dual-mode stacked antenna array using directors of Yagi-Uda antenna as monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 13, No. 1, 575-578, 2014.
doi:10.1109/LAWP.2014.2312976

3. Roopan, R. B. and E. Sidhu, "High gain stacked microstrip folded dipole Yagi antenna configuration for WiMAX applications," IEEE International Conference on Wireless Communications, Signal Processing and Networking, 1013-1017, 2016.

4. Kramer, O., T. Djerafi, and K. Wu, "Vertically multilayer-stacked Yagi antenna with single and dual polarizations," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1022-1030, Apr. 2010.
doi:10.1109/TAP.2010.2041155

5. Jun, S. and K. Chang, "A simple broadband stacked quasi-Yagi antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 58, No. 4, 1804-1805, 2014.

6. Rigelsford, J. M., "A compact stacked Archimedean spiral antenna," Journal of Electromagnetic Waves and Applications, Vol. 26, 17-18, 2372–2380, Dec. 2012.

7. Liu, Y., L.-M. Si, M. Wei, et al. "Some recent developments of microstrip antenna," International Journal of Antennas and Propagation, Vol. 2012, Article ID 428284, 2012.

8. Elahi, M., Irfanullah, R. Khan, A. Abdullah Al-Hadi, S. Usman, and P. J. Soh, "A dual-band planar quasi Yagi-Uda antenna with optimized gain for LTE applications," Progress In Electromagnetics Research C, Vol. 92, 239-250, 2019.
doi:10.2528/PIERC19022401

9. Zhang, Y. and Z. Li, "A dual-band planar quasi-Yagi antenna with double-dipole driver," IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 123-125, 2015.

10. Hachi, A., H. Lebbar, and M. Himdi, "Directional ultra wide band monopole antennas," F. E. Journal of Electronics and Communications, Vol. 21, No. 1–2, 53-65, Aug. 2019.
doi:10.17654/EC021120053

11. Tehrani, B. K., B. S. Cook, and M. M. Tentzeris, "Inkjet printing of multilayer millimeter-wave Yagi-Uda antennas on flexible substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 143-146, Jan. 2015.

12. Yoon, Y., B. Pan, J. Papapolymerou, M. M. Tentzeris, and M. G. Allen, "A vertical Wband surface-micromachined Yagi-Uda antenna," 2005 IEEE Antennas and Propagation Society International Symposium, 2015.