Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-09
Study on Ultra-Wide Stopband Miniaturized Multilayer Frequency Selective Surface with Capacitive Loading
By
Progress In Electromagnetics Research Letters, Vol. 94, 117-123, 2020
Abstract
In this paper, a novel miniaturized frequency selective surface (MFSS) with capacitive loading is proposed; it has characteristics of low profile, second-order, wide-band, and remarkable wide stop-band properties. In a specific frequency band, the proposed MFSS has a second-order filter function characteristic. The proposed MFSS is composed of three metallic layers separated by two dielectric substrates, which offers the spatial form of the second order microwave filter. The band and operating frequency can be controlled by the thickness of dielectric substrates and the gaps between the capacitive loading structures. The element size is smaller than 0.05λ x 0.05λ. The element thickness is less than λ/30, where λ is the free space wavelength at the resonant frequency. The frequency response produced by the proposed MFSS had very good stability when the plane wave incidence angles varied from 0 to 60 degrees. The fundamental frequency f0 is 2.45 GHz; the relative bandwidth δ is 10%; and the stop-band is from 3 GHz to 39.6 GHz. The frequency response demonstrates the excellent filtering performance.
Citation
Guangming Zheng, Cuilin Zhong, Liang Tang, Peng Luo, and Yan Wang, "Study on Ultra-Wide Stopband Miniaturized Multilayer Frequency Selective Surface with Capacitive Loading," Progress In Electromagnetics Research Letters, Vol. 94, 117-123, 2020.
doi:10.2528/PIERL19111201
References

1. Munk, B. A., Frequency Selective Surfaces and Theory and Design, Wiley, New York, USA, 2000.
doi:10.1002/0471723770

2. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multi-objective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, No. 4, 912-915, Apr. 2017.
doi:10.1109/LAWP.2016.2614498

3. Ma, X., C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, "A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2307-2311, Apr. 2014.
doi:10.1109/TAP.2014.2301841

4. Huang, C., W. Pan, and X. Luo, "Low-loss circularly polarized transmit array for beam steering application," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4471-4476, Oct. 2016.
doi:10.1109/TAP.2016.2586580

5. Liu, Z., S. Jie, H. Ma, X.-Y. Zhang, and B. Xing, "A novel dual-passband net-shaped FSS structure used for MIMO antennas," Progress In Electromagnetics Research C, Vol. 90, 29-39, 2019.
doi:10.2528/PIERC18101501

6. Russo, I., L. Boccia, G. Amendola, and G. D. Massa, "Tunable pass-band FSS for beam steering applications," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, Barcelona, 2010.

7. Yan, M. B., S. B. Qu, and J. F. Wang, "A novel miniaturized frequency selective surface with stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 13, No. 4, 639-641, Apr. 2014.
doi:10.1109/LAWP.2014.2313067

8. Xu, R., H. Zhao, Z. Zong, and W. Wu, "Dual-band capacitive loaded frequency selective surfaces with close band spacing," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 12, 782-784, Dec. 2008.
doi:10.1109/LMWC.2008.2007697

9. Hu, X. D., X. L. Zhou, L. S. Wu, L. Zhou, and W. Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 12, 1374-1377, Dec. 2009.

10. Al-Joumayly, M. A. and N. Behdad, "Low-profile, highly-selective, dual-band frequency selective surfaces with closely spaced bands of operation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4042-4050, Dec. 2010.
doi:10.1109/TAP.2010.2078478

11. Ghosh, S. and K. V. Srivastava, "An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 218-220, Mar. 2017.
doi:10.1109/LMWC.2017.2661683

12. Matthaei, G. J., L. Yang, and E. M. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, MeGraw-Hill, New York, 1964.

13. Pang, H. K., K. M. Ho, and K.W. Tam, "A compact microstrip lambda/4 SIR interdigital bandpass filter with extend stopband," IEEE Microwave Symposium Digest, Vol. 3, No. 6, 1621-1624, 2004.

14. Kuo, J. T. and E. Shih, "Stepped impedance resonator bandpass filters with tunable transmission zeros and its applications to wide stopband design," IEEE Microwave Symposium Digest, Vol. 3, No. 7, 1613-1616, 2002.

15. Campos, A. L. P. S. and R. H. C. Manicoba, "Analysis of simple FSS cascading with dual band response," IEEE Transaction on Magnetics, Vol. 46, No. 8, 3345-3348, Aug. 2010.
doi:10.1109/TMAG.2010.2046023

16. Quendo, C., E. Rius, C. Person, and M. Ney, "Integration of optimized low-pass filters in a bandpass filter for out-of-band improvement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2376-2383, Dec. 2001.
doi:10.1109/22.971624

17. Tang, C. W. and M. G. Chen, "A microstrip ultra-wide band bandpass filter with cascaded broad band band pass and bandstop filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 11, 2412-2418, Nov. 2007.
doi:10.1109/TMTT.2007.908671

18. Gao, M., S. M. A. M. H. Abadi, and N. Behdad, "A dual-band, inductively coupled miniaturized element frequency selective surface with higher order bandpass response," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3729-3734, Aug. 2016.
doi:10.1109/TAP.2016.2580181

19. Gao, M., S. M. A. M. H. Abadi, and N. Behdad, "A hybrid miniaturized-element frequency selective surface with a third-order bandpass response," IEEE Antennas and Wireless Propagation Letters, Vol. 16, No. 3, 708-711, Mar. 2017.
doi:10.1109/LAWP.2016.2600524

20. Hussein, M., J. F. Zhou, Y. Huang, and B. Al-Juboori, "A low-profile miniaturized second-order bandpass frequency selective surface," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, 2791-2794, Oct. 2017.