Vol. 90
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-03-13
Performance Analysis of Near-Field Magnetic Induction Communication in Extreme Environments
By
Progress In Electromagnetics Research Letters, Vol. 90, 77-83, 2020
Abstract
Ultra-reliable and low-power wireless communications are desirable for wireless networking in extreme environments such as underground tunnels, underwater, and soil. Existing wireless technologies using electromagnetic (EM) waves suffer from unpredictable multipath fading and blockage. The recent development of magnetic induction (MI) communication provides a low-power and reliable solution, which demonstrates negligible multipath fading, high penetration efficiency, and low attenuation loss in lossy media. However, existing works neglect the fact that MI communication only demonstrates such advantages in the near-field, beyond which the MI communication converges to electromagnetic wave-based communication and all the aforementioned advantages disappear. This letter develops a magnetic field propagation model to show MI communication's different performances in the near-field and the far-field. We develop rigorous models to capture the multipath fading, the penetration efficiency through inhomogeneous media, and the attenuation loss in lossy media. The results show that although MI communication can provide reasonable signals in the far-field, it only demonstrates negligible multipath fading, high penetration efficiency, and low attenuation loss in the near-field.
Citation
Hongzhi Guo, "Performance Analysis of Near-Field Magnetic Induction Communication in Extreme Environments," Progress In Electromagnetics Research Letters, Vol. 90, 77-83, 2020.
doi:10.2528/PIERL20010702
References

1. Constantine, A. B., et al. Antenna Theory: Analysis and Design, 3rd Ed., John wiley & sons, Hoboken, New Jersey, 2005.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1996.

3. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224

4. Gulbahar, B. and O. B. Akan, "A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels," IEEE Transactions on Wireless Communications, Vol. 11, No. 9, 3326-3334, IEEE, 2012.
doi:10.1109/TWC.2012.070912.111943

5. Guo, H., Z. Sun, and P. Wang, "Channel modeling of mi underwater communication using tri-directional coil antenna," 2015 IEEE Global Communications Conference (GLOBECOM), 1-6, IEEE, 2015.

6. Guo, H., Z. Sun, and P. Wang, "On reliability of underwater magnetic induction communications with tri-axis coils," ICC 2019-2019 IEEE International Conference on Communications (ICC), 1-6, IEEE, 2019.

7. Kim, H.-J., K. Kim, S. Han, D.-W. Seo, and J.-W. Choi, "Nearly non-coupling coil array allowing many independent channels for magnetic communication," IEEE Access, Vol. 6, 34190-34197, IEEE, 2018.
doi:10.1109/ACCESS.2018.2849093

8. Kisseleff, S., I. F. Akyildiz, and W. H. Gerstacker, "Digital signal transmission in magnetic induction based wireless underground sensor networks," IEEE Transactions on Communications, Vol. 63, No. 6, 2300-2311, IEEE, 2015.
doi:10.1109/TCOMM.2015.2425891

9. Li, Y., S. Wang, C. Jin, Y. Zhang, and T. Jiang, "A survey of underwater magnetic induction communications: fundamental issues, recent advances, and challenges," IEEE Communications Surveys & Tutorials, IEEE, 2019.

10. Pal, A. and K. Kant, "NFMI: Connectivity for short-range IoT applications," Computer, Vol. 52, No. 2, 63-67, IEEE, 2019.
doi:10.1109/MC.2019.2892862

11. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, IEEE, 2010.
doi:10.1109/TAP.2010.2048858