Vol. 93
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-08-12
Narrowband LTCC Filter with Length-Reduced End-Coupled Resonators
By
Progress In Electromagnetics Research Letters, Vol. 93, 13-19, 2020
Abstract
A narrowband low temperature co-fired ceramic (LTCC) bandpass filter (BPF) with five cascaded physical length-reduced resonators is proposed. Each resonator is built with cascaded horizontal and vertical microstrip lines to produce slow-wave effect, which reduces the physical length of resonators for miniaturization. The entire size of the proposed BPF is only 15 x 2 x 0.3 mm, and a size reduction of 60% is achieved compared with a traditional implementation. A narrowband fractional bandwidth (FBW) of 4% and an average passband insertion loss of only 2.4 dB are achieved. Comparison and discussion are implemented as well.
Citation
Liangfan Zhu, "Narrowband LTCC Filter with Length-Reduced End-Coupled Resonators," Progress In Electromagnetics Research Letters, Vol. 93, 13-19, 2020.
doi:10.2528/PIERL20061801
References

1. Alicioglu, B., G. Boyacioglu, S. Oruc, C . Yavuz, and N. Yildirim, "A new method for efficient bandwidth control of narrowband planar filters," Proc. IEEE proceeding European Microwave Conference, 171-174, 2013.

2. Gholipour, V., R. Hajitashakkori, and A. Alighanbari, "Compact narrowband filter with wide stopband using CSRRs and stub-line loading," Proc. IEEE 24th Iranian Conference on Electrical Engineering (ICEE), 1297-1299, 2016.

3. Wibisono, M. A. and A. Munir, "Utilization of split ring resonator for compact narrowband microstrip bandpass filter," Proc. IEEE 22nd Asia-Pacific Conference on Communications (APCC), 591-594, 2016.

4. Wang, Z., Z. Fu, C. Li, S. Fang, and H. Liu, "A compact negative-group-delay microstrip bandpass filter," Progress In Electromagnetics Research Letters, Vol. 90, 45-51, 2020.
doi:10.2528/PIERL19122701

5. Yue, Y. and Y. Bo, "Design of cross-coupling ceramic SIR narrowband filter," IEEE Proceeding on International Conference on Communication Problem-solving, 29-31, 2014.

6. Shen, M., Z. Shao, X. Li, and Z. He, "Novel multilayered substrate integrated waveguide narrowband filters for millimeter-wave 3D-MCM applications," Proc. IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2016.

7. Hou, W. and Q. Tang, "Linear phase SIWfilter with good selectivity," Progress In Electromagnetics Research Letters, Vol. 89, 105-111, 2020.
doi:10.2528/PIERL19120904

8. Gadhafi, R., D. Cracan, A. A. Mustapha, and M. Sanduleanu, "T-shaped I/O feed based differential bandpass filter with symmetrical transmission zeros and high common mode rejection ratio," Progress In Electromagnetics Research M, Vol. 89, 141-149, 2020.
doi:10.2528/PIERM19111804

9. Hu, S., Y. Gao, X. Zhang, and B. Zhou, "Design of a compact 5.7–5.9GHz filter based on CRLH resonator units," Progress In Electromagnetics Research Letters, Vol. 89, 141-149, 2020.
doi:10.2528/PIERL19110502

10. Hiraga, K., T. Seki, K. Nishikawa, and K. Uehara, "Multi-layer coupled band-pass filter for 60 GHz LTCC system-on-package," Proc. IEEE Asia-Pacific Conference Proceedings (APMC), 259-262, 2010.

11. Choi, B. G., M. G. Stubbs, and C. S. Park, "A Ka-band narrow bandpass filter using LTCC technology," IEEE Microwave and Wireless Components Letters, Vol. 13, 388-389, 2003.
doi:10.1109/LMWC.2003.817139

12. Ambak, Z., A. Ibrahim, H. M. Hizan, A. I. A. Rahim, M. Z. M. Yusoff, R. Ngah, and Y. C. Lee, "Design of 40 GHz multilayer end coupled band pass filter using LTCC technology," Proc. IEEE International Conference on Semiconductor Electronics (ICSE), 294-297, Kuala Lumpur, Malaysia, 2014.

13. Zhou, B., Q. Wang, P. Ge, Q. Ma, Y. Lu, and C.-H. Cheng, "Compact LTCC filter with end-coupled resonators," Proc. IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) Proceedings, 1-2, Hsinchu, Taiwan, 2017.

14. Li, Y., "Compact and narrowband LTCC filter using vertically stacked end-coupled resonators," Microw. Opt. Technol. Lett., Vol. 59, 86-89, 2017.
doi:10.1002/mop.30234

15. AXIEM, Applied Wave Research Corporation, El Segundo, CA, , https://www.awr.com/awrsoftware/products/axiem.