Vol. 94

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-10-26

Low RCS Microstrip Patch Array with Hybrid High Impedance Surface Based Ground Plane

By Avinash Singh and Hema Singh
Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020
doi:10.2528/PIERL20072704

Abstract

For a radiating structure such as dipole/patch array mounted on an aerospace platform, the radiation mode radar cross section (RCS) plays a significant role compared to the structural mode RCS. Thus the estimation and control of array RCS without degrading its radiating characteristics poses a challenge for an antenna engineer. In this paper, a novel design of a low profile 4-element patch array with hybrid HIS-based ground plane is presented to demonstrate both in-band and out-of-band structural RCS reductions. A significant broadband reduction in structural RCS has been achieved from 1 GHz to 80 GHz. The radiation mode RCS of the patch array is computed and controlled through optimized design parameters without degrading the radiation characteristics. The computed array RCS shows that even radiation mode RCS can be reduced except in operating frequency range.

Citation


Avinash Singh and Hema Singh, "Low RCS Microstrip Patch Array with Hybrid High Impedance Surface Based Ground Plane," Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020.
doi:10.2528/PIERL20072704
http://www.jpier.org/PIERL/pier.php?paper=20072704

References


    1. Jenn, D. C., Radar and Laser Cross Section Engineering, 476, AIAA Education Series, Washington, DC, ISBN: 1-56347-105-1, 1995.

    2. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
    doi:10.1109/22.798001

    3. Shen, Z., B. Zheng, Z. Mei, J. Yang, and W. Tang, "On the design of wide-band and thin absorbers using the multiple resonances concept," International Conference on Microwave and Millimeter Wave Technology, 32-35, Nanjing, 2008.

    4. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber," IET Microwaves, Antennas & Propagation, 850-855, 2016.
    doi:10.1049/iet-map.2015.0653

    5. Kundu, D., A. Mohan, and A. Chakrabarty, "Single-layer wideband microwave absorber using array of crossed dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1589-1592, 2016.
    doi:10.1109/LAWP.2016.2517663

    6. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, May 2012.
    doi:10.1109/TAP.2012.2189701

    7. Jia, Y., Y. Liu, H. Wang, K. Li, and S. Gong, "Low-RCS, high-gain, and wideband mushroom antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 277-280, 2015.
    doi:10.1109/LAWP.2014.2363071

    8. Ramkumar, M. A., C. Sudhendra, and K. Rao, "A novel low RCS microstrip antenna array using thin and wideband radar absorbing structure based on embedded passives resistors," Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016.
    doi:10.2528/PIERC16080506

    9. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
    doi:10.1109/TAP.2007.910306

    10. Iriarte, J. C., A. T. Pereda, J. L. M. D. Falcon, I. Ederra, R. Gonzalo, and P. D. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, Dec. 2013.
    doi:10.1109/TAP.2013.2282915

    11. Singh, H. and R. M. Jha, Active Radar Cross Section Reduction: Theory and Applications, 325, Cambridge University Press, Cambridge, UK, ISBN: 978-1-107-092617, 2015.
    doi:10.1017/CBO9781316136171

    12. Singh, A., D. K. Sasidharan, and H. Singh, "Estimation and control of total array RCS of microstrip patch array with hybrid HIS-based ground plane," URSI Asia-Pacific Radio Science Conference (AP-RASC 2019), 1, New Delhi, India, Mar. 2019.

    13. Singh, A., K. D. Sasidharan, and H. Singh, "Analytical estimation of radiation mode radar cross section (RCS) of phased arrays," IEEE Transactions on Vehicular Technology, Vol. 69, No. 6, 6415-6421, Jun. 2020.
    doi:10.1109/TVT.2020.2986007

    14. Zhang, J., et al., "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
    doi:10.1109/LAWP.2012.2215832

    15. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronic Letters, Vol. 52, No. 9, 767-768, Apr. 28, 2016.
    doi:10.1049/el.2016.0336

    16. Liu, Y., H. Wang, K. Li, and S. Gong, "RCS reduction of a patch array antenna based on microstrip resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 4-7, 2015.
    doi:10.1109/LAWP.2014.2354341

    17. Liu, Y. and X. Zhao, "Perfect absorber metamaterial for designing low-RCS patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1473-1476, 2014.
    doi:10.1109/LAWP.2014.2341299