Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-25
Miniaturized Triple-Section Spiral Antenna with Improved Radiation
By
Progress In Electromagnetics Research Letters, Vol. 94, 67-73, 2020
Abstract
A triple-section arm structure is proposed for designing a planar spiral antenna. All three sections are designed by combining logarithmic, rooted, and sine equations. The slowly outstretched and contractive structure is innovatively realized. According to the radiation characteristics of the spiral antenna, each section corresponds to different in-band enhancement effects. Numerical simulation in the frequency domain and experiments using two different baluns are carried out. The results show that the novel spiral topology could simultaneously achieve improved axial ratio, low cross-polarized gain, and excellent impedance matching throughout the whole band. The axial ratio is reduced by 1.5 dB at mid frequencies and more at low frequencies, comparing the proposed arm with a sinusoid-added equiangular spiral arm. Without applying the resistive loading method, a lower cut-off frequency of 750 MHz is still realized both in impedance bandwidth and axial ratio bandwidth. The low cut-off frequency of the proposed arm is 30.2% lower than the conventional Equiangular spiral arm. Besides, the polarization isolation is significantly improved, especially at low frequencies. Therefore, the proposed miniaturized spiral arm structure could be a competitive form for designing spiral antennas.
Citation
Guangyao Yang, Shengbo Ye, Yi-Cai Ji, Xiaojuan Zhang, and Guangyou Fang, "Miniaturized Triple-Section Spiral Antenna with Improved Radiation," Progress In Electromagnetics Research Letters, Vol. 94, 67-73, 2020.
doi:10.2528/PIERL20081003
References

1. Obrien, J. M., J. E. Grandfield, G. Mumcu, et al. "Miniaturization of a spiral antenna using periodic Z-plane meandering," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1843-1848, 2015.
doi:10.1109/TAP.2015.2394796

2. Kramer, B. A., C.-C. Chen, and J. L. Volakis, "Size reduction of a low-profile spiral antenna using inductive and dielectric loading," IEEE Antennas Wireless Propag. Lett., Vol. 7, No. 7, 22-25, 2008.
doi:10.1109/LAWP.2007.914116

3. Volakis, J. L., C.-C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, McGraw-Hill, New York, NY, USA, 2010.

4. Shih, T. and N. Behdad, "A compact, broadband spiral antenna with unidirectional circularly polarized radiation patterns," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2776-2781, 2015.
doi:10.1109/TAP.2015.2414476

5. Elmansouri, M. A. and D. S. Filipovic, "Low-dispersion spiral antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5522-5530, 2012.
doi:10.1109/TAP.2012.2211321

6. Ranjbaran, S. M. H. and S. Mohanna, "Improved spiral antenna with a new semi-fractal reflector for short-range sensing," IET Microw. Antennas Propag., Vol. 12, No. 11, 1839-1845, 2018.
doi:10.1049/iet-map.2018.0154

7. Sharma, C. and D. K. Vishwakarma, "Miniaturization of spiral antenna based on fibonacci sequence using modified koch curve," IEEE Antennas Wireless Propag. Lett., Vol. 16, 932-935, 2017.
doi:10.1109/LAWP.2016.2614721