Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-18
Design and Construction of a Nonuniform Wiggly Lines Bidirectional Coupler in Combination with the Reflected Power Canceller Method
By
Progress In Electromagnetics Research Letters, Vol. 94, 157-163, 2020
Abstract
This paper presents a bidirectional coupler which is designed by combining nonuniform wiggly lines and the reflected power canceller (RPC) method. The combination not only brings about a high directivity but also makes a wideband structure with a compact size. Although, in the RPC method, an idle port is used to produce a reflected signal in order to achieve a high directivity, there are not any idle ports in the proposed coupler. The coupler was built on an FR4 substrate. The measurement results show that this structure is suitable to monitor forward and reflected signals in high power applications. The fabricated coupler has the directivity of more than 22 dB and the coupling flatness of ±0.12 dB in the forward and backward signals in a wide frequency range of 140 MHz-190 MHz.
Citation
Pouya Mehrjouseresht, Mahshad Rezvani, Majid Mohamadi Demneh, and Reza Motahari, "Design and Construction of a Nonuniform Wiggly Lines Bidirectional Coupler in Combination with the Reflected Power Canceller Method," Progress In Electromagnetics Research Letters, Vol. 94, 157-163, 2020.
doi:10.2528/PIERL20081703
References

1. Lee, S. and Y. Lee, "An inductor-loaded microstrip directional coupler for directivity enhancement," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 6, 362-364, Jun. 2009.
doi:10.1109/LMWC.2009.2020014

2. Chun, Y., J. Moon, S. Yun, and J. Rhee, "Microstrip line directional couplers with high directivity," Electronics Letters, Vol. 40, No. 5, 317-318, March 4, 2004.
doi:10.1049/el:20040186

3. Moscoso-Martir, A., I. Molina-Fernandez, and A. Ortega-Monux, "High performance multi-section corrugated slot-coupled directional couplers," Progress In Electromagnetics Research, Vol. 134, 437-454, 2013.
doi:10.2528/PIER12111504

4. Hrobak, M., M. Sterns, E. Seler, M. Schramm, and L. Schmidt, "Design and construction of an ultrawideband backward wave directional coupler," IET Microwaves, Antennas & Propagation, Vol. 6, No. 9, 1048-1055, June 19, 2012.
doi:10.1049/iet-map.2011.0471

5. Sohn, S., A. Gopinath, and J. T. Vaughan, "A compact, high power capable, and tunable high directivity microstrip coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 10, 3217-3223, Oct. 2016.
doi:10.1109/TMTT.2016.2602835

6. Pelaez-Perez, A. M., P. Almorox-Gonzalez, J. I. Alonso, and J. Gonzalez-Martın, "Ultra-broadband directional couplers using microstrip with dielectric overlay in millimeter-wave band," Progress In Electromagnetics Research, Vol. 117, 495-509, 2011.
doi:10.2528/PIER11042703

7. Yıldırım, B. S. and K. Karayahsi, "Broadband UHF microstrip coupler," AEU --- International Journal of Electronics and Communications, Vol. 108, 2019.

8. Maloratsky, L. G., Passive RF & Microwave Integrated Circuits, Elsevier/Newnes, Amsterdam, 2004.

9. Singh, S., R. P. Yadav, and A. Jain, "Miniaturized dual-band branch-line coupler with folded stubs," 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 2019.

10. Coromina, J., P. Velez, J. Bonache, and F. Martın, "Branch line couplers with small size and harmonic suppression based on non-periodic step impedance shunt stub (SISS) loaded lines," IEEE Access, Vol. 8, 67310-67320, 2020.
doi:10.1109/ACCESS.2020.2985569

11. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip rat-race coupler with modified lange and T-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.
doi:10.2528/PIER11032003

12. Kirschning, M. and R. H. Jansen, "Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 83-90, Jan. 1984.
doi:10.1109/TMTT.1984.1132616

13. Uysal, S., Nonuniform Line Microstrip Directional Couplers and Filters, Artech House, 1993.