Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-06
Circularly Polarized Wideband MIMO Rectangular Antenna in Cube Form for X-Band with Pattern and Polarization Diversity
By
Progress In Electromagnetics Research Letters, Vol. 94, 103-108, 2020
Abstract
The present work describes a new wideband circularly polarized MIMO rectangular antenna in cube form for X-band application (8 to 11.8 GHz). Proposed antenna structure shows pattern diversity in whole 360° angle with polarization diversity. The isolation between the antennas is more than -14.5 dB. The impedance matching bandwidth (IMBW) is 3.8 GHz, and 3 dB axial ratio bandwidth is 2.91 GHz. The envelope correlation coefficient is less than 0.035, and its diversity gain is 10 dB. A copper metallic cylinder is placed inside the cube antenna to reduce the mutual coupling between the antennas.
Citation
Prashant Chaudhary, Ashwani Kumar, Parmod Kumar, Kamlesh Patel, and Anand Kumar Verma, "Circularly Polarized Wideband MIMO Rectangular Antenna in Cube Form for X-Band with Pattern and Polarization Diversity," Progress In Electromagnetics Research Letters, Vol. 94, 103-108, 2020.
doi:10.2528/PIERL20091404
References

1. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Investigation on cavity/slot antennas for diversity and MIMO systems: The example of a three-port antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 414-417, 2008.
doi:10.1109/LAWP.2008.2000830

2. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Pattern reconfigurable cubic antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 310-317, 2009.
doi:10.1109/TAP.2008.2011221

3. Chen, S. and K.-M. Luk, "A dual-mode wideband MIMO cube antenna with magneto-electric dipoles," IEEE Trans. Antennas Propag., Vol. 12, No. 12, 5951-5959, 2012.

4. Getu, B. N. and J. B. Andersen, "The MIMO cube — A compact MIMO antenna," IEEE Trans. Wireless Communication, Vol. 4, No. 3, 1136-1141, 2005.
doi:10.1109/TWC.2005.846997

5. Yun, J. X. and R. G. Vaughan, "Slot MIMO cube," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, July 2010.

6. Jeong, J. G., J. Ahn, and Y. J. Yoon, "Ultra-wideband reconfigurable radiation pattern antenna for diversity applications," Electronics Letters, Vol. 52, No. 25, 2086-2087, 2015.
doi:10.1049/el.2015.2324

7. Das, G., N. K. Sahu, A. Sharma, R. K. Gangwar, and M. S. Sharawi, "Dielectric resonator based 4-element 8-port MIMO antenna with multi-directional pattern diversity," IET Microwaves, Antennas & Propagation, Vol. 13, Issue 1, No. 1, 16-22, 2019.
doi:10.1049/iet-map.2018.5081

8. Feng, B., J. Lai, Q. Zeng, and K. L. Chung, "A dual-wideband and high gain magneto-electric dipole antenna and its 3D MIMO system with metasurface for 5G/WiMAX/WLAN/X-band applications," IEEE Access, 33387-33398, 2018.
doi:10.1109/ACCESS.2018.2848476

9. Kruesi, C. M., R. J. Vyas, and M. M. Tentzeris, "Design and development of a novel 3-D cubic antenna for Wireless Sensor Networks (WSNs) and RFID applications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3293-3299, Oct. 2009.
doi:10.1109/TAP.2009.2028672

10. Chepala, A. and V. Fusco, "Cascaded Rotman lens fed circular array," Electronics Letters, Vol. 55, No. 6, 300-302, March 21, 2019.
doi:10.1049/el.2018.7753

11. Quan, X., R. Li, and M. M. Tentzeris, "A broadband omnidirectional circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2363-2370, May 2013.
doi:10.1109/TAP.2012.2237532

12. Assimonis, S. D., A. Theopoulos, and T. Samaras, "A new high-gain and low-complexity pattern-reconfigurable antenna," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-4, Lisbon, 2015.