Vol. 96
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-29
Efficient Evaluation of the Time-Harmonic Response in Central Loop Electromagnetic Sounding
By
Progress In Electromagnetics Research Letters, Vol. 96, 53-58, 2021
Abstract
This work presents an efficient method that allows to accurately calculate the time-harmonic vertical magnetic field generated at the center of a large current-carrying coil of wire positioned above a layered ground. The method consists of evaluating the integral representation for the vertical magnetic field by using a hybrid procedure. At first, the direct and ideal reflected fields are extracted from the total magnetic field and expressed in explicit form. Then, the non-analytic part of the integrand of the remaining contribution is replaced with a sum of partial fractions, obtained by using a rational function fitting algorithm. Finally, the resulting sum of integrals is analytically evaluated and turned into a sum of modified Bessel functions of the second kind. The obtained expression for the magnetic field is then used to evaluate the voltage induced in a small receiving loop co-axial with the transmitting loop.
Citation
Vincenzopio Tamburrelli Marcello Salis , "Efficient Evaluation of the Time-Harmonic Response in Central Loop Electromagnetic Sounding," Progress In Electromagnetics Research Letters, Vol. 96, 53-58, 2021.
doi:10.2528/PIERL20120803
http://www.jpier.org/PIERL/pier.php?paper=20120803
References

1. Boerner, D. E., "Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results," Surveys in Geophysics, Vol. 13, No. 4–5, 435-488, 1992.
doi:10.1007/BF01903486

2. Constable, S. C., R. L. Parker, and C. G. Constable, "Occam's inversion: A practical algorithm for generatlng smooth models from electromagnetic sounding data," Geophysics, Vol. 52, No. 3, 289-300, 1987.
doi:10.1190/1.1442303

3. Shastri, N. L. and H. P. Patra, "Multifrequency sounding results of laboratory simulated homogeneous and two-Layer earth models," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 749-752, 1988.
doi:10.1109/36.7706

4. Parise, M., "Improved Babylonian square root algorithm-based analytical expressions for the surface-to-surface solution to the Sommerfeld half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 63, 5832-5837, 2015.
doi:10.1109/TAP.2015.2478958

5. Parise, M., "Exact EM field excited by a short horizontal wire antenna lying on a conducting soil," AEU — International Journal of Electronics and Communications, Vol. 70, No. 5, 676-680, 2016.
doi:10.1016/j.aeue.2016.02.004

6. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003.
doi:10.1190/1.1635038

7. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1667-1677, 2011.
doi:10.1163/156939311797164945

8. Romano, D., I. Kovacevic-Badstubner, M. Parise, U. Grossner, J. Ekman, and G. Antonini, "Rigorous dc solution of partial element equivalent circuit models including conductive, dielectric,and magnetic materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 3, 870-879, 2020.
doi:10.1109/TEMC.2019.2919759

9. Beard, L. P. and J. E. Nyquist, "Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability," Geophysics, Vol. 63, No. 5, 1556-1564, 1998.
doi:10.1190/1.1444452

10. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory — Volume 1, 131-308, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

11. Parise, M., "Second-order formulation for the quasi-static field from a vertical electric dipole on a lossy half-space," Progress In Electromagnetics Research, Vol. 136, 509-521, 2013.
doi:10.2528/PIER12112508

12. Spies, B. R. and F. C. Frischknecht, "Electromagnetic sounding," Electromagnetic Methods in Applied Geophysics, Volume 2, 285-426, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

13. Parise, M., L. Lombardi, F. Ferranti, and G. Antonini, "Magnetic coupling between coplanar filamentary coil antennas with uniform current," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, 622-626, 2020.
doi:10.1109/TEMC.2019.2904516

14. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave x-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.2528/PIER07100201

15. Parise, M, "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Prop. Letters, Vol. 13, 23-26, 2014.
doi:10.1109/LAWP.2013.2296149

16. Werner, D. H., "An exact integration procedure for vector potentials of thin circular loop antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 157-165, 1996.
doi:10.1109/8.481642

17. Parise, M., "Full-wave analytical explicit expressions for the surface fields of an electrically large horizontal circular loop antenna placed on a layered ground," IET Microwaves, Antennas & Propagation, Vol. 11, 929-934, 2017.
doi:10.1049/iet-map.2016.0590

18. Palacky, G. J., "Resistivity characteristics of geologic targets," Electromagnetic Methods in Applied Geophysics, Vol. 1, 52-129, Nabighian, M. N., Ed., SEG, Tulsa, Oklahoma, 1988.

19. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, 181-200, 2005.
doi:10.1007/s00024-004-2586-2

20. Parise, M., "Efficient computation of the surface fields of a horizontal magnetic dipole located at the air-ground interface," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, 653-664, 2016.
doi:10.1002/jnm.2120

21. Wait, J. R., "Fields of a horizontal loop antenna over a layered half-space," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1301-1311, 1995.
doi:10.1163/156939395X00064

22. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265

23. Singh, N. P. and T. Mogi, "Effective skin depth of EM fields due to large circular loop and electric dipole sources," Earth Planets Space, Vol. 55, 301-313, 2003.
doi:10.1186/BF03351764

24. Parise, M., "An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 8, 932-942, 2014.
doi:10.1080/09205071.2014.897653

25. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge (UK), 1944.

26. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions on Power Delivery, Vol. 14, 1052-1061, 1999.
doi:10.1109/61.772353

27. Parise, M. and S. Cristina, "High-order electromagnetic modeling of shortwave inductive diathermy effects," Progress In Electromagnetics Research, Vol. 92, 235-253, 2009.
doi:10.2528/PIER09022608

28. Parise, M., "A study on energetic efficiency of coil antennas used for RF diathermy," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 385-388, 2011.
doi:10.1109/LAWP.2011.2148190