Vol. 96
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-22
Surface Mountable Compact Printed Dipole Antenna for GPS/WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 96, 7-15, 2021
Abstract
A low-profile, electrically compact, and cost-effective antenna for wireless communication is presented. The antenna comprises self-complementary dipole elements on each side of the resonator surface. The dipole is excited using co-axial feed for an efficient impedance matching. An electrically compact antenna has dimensions of 0.13λ × 0.26λ at the lower frequency. The dipole covers 1.57 GHz and 3.65 GHz frequencies offering the measured impedance bandwidth in the order of 1.83% and 2.30% respectively. The self-complementary structure of the dipole having multiple coupling elements permits adequate tuning of the antenna on target frequencies. The resonant modes of the antenna can be tuned by merely modifying the position of the complementary structure on each side of the dipole. The engineered slots in the dipole permit further fine-tuning. The antenna presents gain in the order of 0.71 dBi and 1.27 dBi and stable radiation patterns for the two frequencies.
Citation
Hitesh Patel, and Trushit K. Upadhyaya, "Surface Mountable Compact Printed Dipole Antenna for GPS/WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 96, 7-15, 2021.
doi:10.2528/PIERL20121204
References

1. Takeshore, K., S. Singh, C. Sairam, and S. D. Ahirwar, "Design of asymmetric wideband printed dipole antenna using inset feeding technique," Progress In Electromagnetics Research C, Vol. 96, 87-96, 2019.
doi:10.2528/PIERC19081402

2. Kedze, K. E., H. Wang, S. X. Ta, and I. Park, "Wideband low-profile printed dipole antenna incorporated with folded strips and corner-cut parasitic patches above the ground plane," IEEE Access, Vol. 7, 15537-15546, 2019.
doi:10.1109/ACCESS.2019.2894812

3. Singh, A., J. Meena, N. Baghel, and S. Mukherje, "Design of printed dipole antenna for enhanced coverage efficiency," 2020 URSI Regional Conference on Radio Science (URSI-RCRS), 1-6, IEEE, February 2020.

4. Ma, T. G. and S. K. Jeng, "A printed dipole antenna with tapered slot feed for ultrawide-band applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3833-3836, 2005.
doi:10.1109/TAP.2005.858819

5. Liu, N. W., L. Zhu, W. W. Choi, and X. Zhang, "“Wideband shorted patch antenna under radiation of dual-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2789-2796, 2017.
doi:10.1109/TAP.2017.2688802

6. Qu, S. W., J. L. Li, Q. Xue, and C. H. Chan, "Wideband periodic endfire antenna with bowtie dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 314-317, 2008.

7. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, 2017.

8. Patel, U. P. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

9. Kishore, N., A. Prakash, and V. S. Tripathi, "A reconfigurable ultra wide band antenna with defected ground structure for ITS application," AEU-International Journal of Electronics and Communications, Vol. 72, 210-215, 2017.
doi:10.1016/j.aeue.2016.12.009

10. Singhal, S. and A. K. Singh, "Asymmetrically CPW-fed hourglass shaped UWB monopole antenna with defected ground plane," Wireless Personal Communications, Vol. 94, No. 3, 1685-1699, 2017.
doi:10.1007/s11277-016-3706-x

11. Zeng, J. and K. M. Luk, "A simple wideband magnetoelectric dipole antenna with a defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1497-1500, 2018.
doi:10.1109/LAWP.2018.2850890

12. Upadhyaya, T. K., A. Desai, and R. H. Patel, "Design of printed monopole antenna for wireless energy meter and smart applications," Progress In Electromagnetics Research Letters, Vol. 77, 27-33, 2018.
doi:10.2528/PIERL18042203

13. Tseng, C. F. and C. L. Huang, "A wideband cross monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2464-2468, 2009.
doi:10.1109/TAP.2009.2024576

14. Patel, H. and T. K. Upadhyaya, "Printed multiband monopole antenna for smart energy meter/WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 89, 43-51, 2020.
doi:10.2528/PIERM19121901

15. Shuai, C. Y. and G. M. Wang, "A novel planar printed dual-band magneto-electric dipoleantenna," IEEE Access, Vol. 5, 10062-10067, 2017.
doi:10.1109/ACCESS.2017.2712616

16. Liu, N. W., L. Zhu, W. W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1055-1062, 2017.
doi:10.1109/TAP.2017.2657486

17. Upadhyaya, T., A. Desai, R. Patel, U. Patel, K. P. Kaur, and K. Pandya, "Compact transparent conductive oxide based dual band antenna for wireless applications," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), 41-45, Singapore, Nov. 19–22, 2017.

18. Lu, W. J., Q. Li, S. G. Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 4980-4990, 2017.
doi:10.1109/TAP.2017.2734073

19. Patel, R., T. Upadhyaya, and A. Desai, "Capacitive couplings compact antenna for LTE/WiMAX/WLAN application," Microwave and Optical Technology Letters, Vol. 60, No. 12, 2977-2983, 2018.
doi:10.1002/mop.31452

20. Rezaeieh, S. A. and A. M. Abbosh, "Compact planar loop-dipole composite antenna with director for bandwidth enhancement and back radiation suppression," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3723-3728, 2016.
doi:10.1109/TAP.2016.2570246

21. Zahid, M. N., J. Jiang, U. Rafique, and D. Eric, "Modified planar square-loop antenna for electronic article surveillance radio frequency identification applications," Journal of Communications Technology and Electronics, Vol. 65, No. 10, 1161-1166, 2020.
doi:10.1134/S1064226920100071

22. Lu, W. J., G. M. Liu, K. F. Tong, and H. B. Zhu, "Dual-band loop-dipole composite unidirectional antenna for broadband wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2860-2866, 2014.
doi:10.1109/TAP.2014.2307343

23. Rezaeieh, S. A., A. Zamani, K. S. Bialkowski, and A. M. Abbosh, "Unidirectional slot-loaded loop antenna with wideband performance and compact size for congestive heart failure detection," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4557-4562, 2015.
doi:10.1109/TAP.2015.2457935

24. Khanjari, S.P., S.Jarchi, and M. Mohammad-Taheri, "Compact andwidebandplanarloop antenna with microstrip to parallel strip balun feed using metamaterials," AEU-International Journal of Electronics and Communications, Vol. 111, 152883, 2019.
doi:10.1016/j.aeue.2019.152883

25. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index materialinspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104

26. Kedze, K. E., H. Wang, and I. Park, "Compact broadband omnidirectional radiation pattern printed dipole antenna incorporated with split-ring resonators," IEEE Access, Vol. 6, 49537-49545, 2018.
doi:10.1109/ACCESS.2018.2868989

27. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229, 2016.
doi:10.1017/S175907871400138X

28. Desai, A. and T. Upadhyaya, "Transparent dual band antenna with μ-negative material loading for smart devices," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2805-2811, 2018.
doi:10.1002/mop.31474

29. Geetharamani, G. and T. Aathmanesan, "“A metamaterial inspired tapered patch antenna for WLAN/WiMAX applications," Wireless Personal Communications, 1-13, 2020.

30. Wang, Y. D., J. H. Lu, and H. M. Hsiao, "Novel design of semi-circular slot antenna with tripleband operation for WLAN/WIMAX communication," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1531-1534, 2008.
doi:10.1002/mop.23422

31. Azaro, R., E. Zeni, P. Rocca, and A. Massa, "Innovative design of a planar fractal-shaped GPS/GSM/Wi-Fi antenna," Microwave and Optical Technology Letters, Vol. 50, No. 3, 825-829, 2008.
doi:10.1002/mop.23208