Vol. 96
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-02-18
Ultraviolet Vortex Generation through All-Dielectric Nano-Antennas for Free Space Optical Communication
By
Progress In Electromagnetics Research Letters, Vol. 96, 121-128, 2021
Abstract
Metamaterials have revolutionized the research in conventional electromagnetics. They display unique properties which can be used for the manipulation of electromagnetic waves in unexpected ways. In this research, a diamond nano-antenna is designed and optimized using the CST Microwave Studio, which uses Finite Difference Time Domain (FDTD) method. The designed unit cell shows high polarization conversion rates (PCR) for ultraviolet (UV) frequencies (especially the UV-B band) whilst covering Panchatram-Berry (PB) phase. The unit cell is then used to design metasurfaces that generate light beams carrying Orbital Angular Momentum (OAM) of different orders. Through the design of two dimensional metamaterial surfaces, the behavior of electromagnetic beams can be changed on sub-wavelength scale. This has led to a number of applications related to nanotechnology. A vortex beam carries Orbital Angular Momentum (OAM) which has played a vital role in increasing the bandwidth and data rate of optical communication systems. Therefore, OAM beams having different topological charges have been generated at 294 nm to propose an improvement in Free Space Optical (FSO) communication. Optical links also function as a suitable substitute for applications where Radio Frequency (RF) communications may not be effective. The proposed theoretical model is expected to open new horizons in optical communication by incorporating the use of nanoscale devices with high efficiencies in the ultraviolet regime.
Citation
Arslan Asim, "Ultraviolet Vortex Generation through All-Dielectric Nano-Antennas for Free Space Optical Communication," Progress In Electromagnetics Research Letters, Vol. 96, 121-128, 2021.
doi:10.2528/PIERL21010204
References

1. Padgett, M., J. Courtial, and L. Allen, "Light’s orbital angular momentum," Physics Today, Vol. 57, No. 5, 35, May 2004.
doi:10.1063/1.1768672

2. Kildishev, A., A. Boltasseva, and V. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 1232009-1232009, 2013.
doi:10.1126/science.1232009

3. Genevet, P., F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139, 2017.
doi:10.1364/OPTICA.4.000139

4. Kuznetsov, A. I., A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk'yanchuk, "Optically resonant dielectric nanostructures," Science, Vol. 354, No. 6314, 2472, 2016.
doi:10.1126/science.aag2472

5. Hui, X., S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, et al. "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, Apr. 2015.
doi:10.1109/LAWP.2014.2387431

6. Chen, Y., et al. "A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. , Vol. 15, 1156-1158, 2016.
doi:10.1109/LAWP.2015.2497243

7. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased array for generating OAM radio beams," Electron. Lett., Vol. 50, No. 20, 1414-1415, Sep. 2014.
doi:10.1049/el.2014.2860

8. Hui, X., et al. "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Sci. Rep., Vol. 5, 1-9, 2015.

9. Niemiec, R., C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, "Characterization of an OAM flat-plate antenna in the millimeter frequency band," IEEE Antennas Propag. Lett., Vol. 13, 1011-1014, 2014.
doi:10.1109/LAWP.2014.2326525

10. Yue, F., D. Wen, J. Xin, B. D. Geradot, J. Li, and X. Chen, "Vector vortex beam generation with a single plasmonic metasurface," ACS Photonics, Vol. 3, No. 9, 1558-1563, 2016.
doi:10.1021/acsphotonics.6b00392

11. Yang, Z., D.-F. Kuang, and F. Cheng, "Vector vortex beam generation with dolphin-shaped cell meta-surface," Optics Express, Vol. 25, No. 9, 22780-22788, 2017.
doi:10.1364/OE.25.022780

12. Zhang, Y., J. Gao, and X. Yang, "Spatial variation of vector vortex beams with plasmonic metasurfaces," Sci. Rep., Vol. 9, No. 1, 1-11, 2019.

13. Ding, F., Y. Chen, and S. I. Bozhevolnyi, "Focused vortex-beam generation using gap-surface plasmon metasurfaces," Nanophotonics, Vol. 9, No. 2, 371-378, 2020.
doi:10.1515/nanoph-2019-0235

14. Ji, C., J. Song, C. Huang, X. Wu, and X. Luo, "Dual-band vortex beam generation with different OAM modes using single layer metasurface," Optics Express, Vol. 27, No. 1, 34-44, 2019.
doi:10.1364/OE.27.000034

15. Zhou, H., J. Yang, C. Gao, and S. Fu, "High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation," Optical Materials Express, Vol. 9, No. 6, 2699-2707, 2019.
doi:10.1364/OME.9.002699

16. Yang, J., H. Zhou, and T. Lan, "All-dielectric reflective metasurface for orbital angular momentum beam generation," Optical Materials Express, Vol. 9, No. 9, 3594-3603, 2019.
doi:10.1364/OME.9.003594

17. Mahmood, N., et al. "Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides," Nanoscale, Vol. 10, No. 38, 18323-18330, 2018.
doi:10.1039/C8NR05633A

18. Mahmood, N., et al. "Twisted non-diffracting beams through all dielectric meta-axicons," Nanoscale, Vol. 11, No. 43, 20571-20578, 2019.
doi:10.1039/C9NR04888J

19. Yang, Y., W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett., Vol. 14, No. 3, 1394-1399, 2014.
doi:10.1021/nl4044482

20. Shen, Y., X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities," Light Sci. Appl., Vol. 8, 90, Aug. 2019.
doi:10.1038/s41377-019-0194-2

21. Hranilovic, S., "Trends and progress in optical wireless communications," 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 — Proc., 26-28, 2017.

22. Sun, X., et al. "71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation," Opt. Express, Vol. 25, No. 19, 23267, 2017.
doi:10.1364/OE.25.023267

23. Wang, J., et al. "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nat. Photon., Vol. 6, No. 7, 488-496, 2012.
doi:10.1038/nphoton.2012.138

24. Bozinovic, N., et al. "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, 1545-48, 2013.
doi:10.1126/science.1237861

25. Huang, H., et al. "100 Tbit/s free-space data link enabled by three dimensional multiplexing of orbital angular momentum, polarization, and wavelength," Opt. Lett., Vol. 39, 197-200, Jan. 2014.
doi:10.1364/OL.39.000197

26. Phillip, H. R. and E. A. Taft, "Kramers-Kronig analysis of reflectance data for diamond," Phys. Rev., Vol. 136, A1445-A1448, 1964.
doi:10.1103/PhysRev.136.A1445

27. Savenkov, S. N., "Jones and Mueller matrices: Structure symmetry relations and information content," Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, 71–114, Praxis Publishing, Chichester, U.K., 2009.