Vol. 98

Latest Volume
All Volumes
All Issues
2021-06-07

Surface-Mount PIFA Using Ball Grid Array Packaging for 5G mmWave

By Xi Wang, Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu
Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021
doi:10.2528/PIERL21050203

Abstract

In this letter, a surface-mount planar inverted-F antenna (PIFA) is proposed for the 5G mmWave system using ball grid array packaging (BGA). To meet the requirement of cost-effectiveness, the proposed antenna element is designed on a single FR4 layer to achieve low cost. To achieve a compact size, the BGA packaging is used on the proposed antenna element. Finally, the size of the antenna prototype is only 4.5 mm × 4.5 mm × 1.3 mm. Besides, the surface-mount feature allows the proposed antenna to be integrated with other devices in the same system package. The simulation and measurement results are discussed in detail. The measurement results show that the impedance bandwidth of - 10 dB is 15.3 % (24.7-29.6 GHz), and the peak gain is 5.85 dBi at 28 GHz. The proposed PIFA can be used in the 5G NR bands N257 (26.5-29.5 GHz), N258 (24.25-27.5 GHz), and N261 (27.5-28.35 GHz).

Citation


Xi Wang, Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Surface-Mount PIFA Using Ball Grid Array Packaging for 5G mmWave ," Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021.
doi:10.2528/PIERL21050203
http://www.jpier.org/PIERL/pier.php?paper=21050203

References


    1. Andrews, J. G., et al., "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
    doi:10.1109/JSAC.2014.2328098

    2. Hong, W., K. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6250-6261, Dec. 2017.
    doi:10.1109/TAP.2017.2740963

    3. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
    doi:10.1109/TAP.2017.2700888

    4. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
    doi:10.1109/LAWP.2016.2523514

    5. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
    doi:10.1109/JPROC.2019.2933267

    6. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
    doi:10.1109/TCPMT.2020.3041412

    7. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array antenna-in-package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019.
    doi:10.1109/LAWP.2019.2938229

    8. Ahmad, Z. and J. Hesselbarth, "High-efficiency wideband surface-mount elevated 3-D patch antenna for millimeter waves," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 573-576, 2017.
    doi:10.1109/LAWP.2017.2682962

    9. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas Propag. Mag., Vol. 54, No. 4, 14-34, Aug. 2012.
    doi:10.1109/MAP.2012.6309152

    10. Kearney, D., M. John, and M. J. Ammann, "Miniature ceramic PIFA for UWB band groups 3 and 6," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 28-31, 2010.
    doi:10.1109/LAWP.2010.2041423

    11. Kearney, D., M. John, and M. J. Ammann, "Miniature ceramic dual-PIFA antenna to support band group 1 UWB functionality in mobile handset," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 336-339, Jan. 2011.
    doi:10.1109/TAP.2010.2090485

    12. Abdelgwad, A. H. and M. Ali, "Capacity and efficiency improvement of MIMO antenna systems for 5G handheld terminals," Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020.
    doi:10.2528/PIERC20052103