Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-08-07

High Gain and Wideband Multi-Stack Multilayer Anisotropic Dielectric Antenna

By Farhad Moayyed, Hamid Reza Dalili Oskouei, and Morteza Mohammadi Shirkolaei
Progress In Electromagnetics Research Letters, Vol. 99, 103-109, 2021
doi:10.2528/PIERL21062307

Abstract

A multi-stack anisotropic cylindrical dielectric resonator antenna with high gain and wide bandwidth is reported. This antenna is designed with three different stacks, and each stack consists of a multilayer dielectric structure to emulate uniaxial anisotropy. Multi-stack, multilayer structure is responsible for producing wide bandwidth and high gain. In addition, the antenna is surrounded by cylindrical metallic cavity to increase directivity in broadside direction. Similar simulated and measured results indicate a wide impedance bandwidth of 37% along with a maximum gain 9.25 dB.

Citation


Farhad Moayyed, Hamid Reza Dalili Oskouei, and Morteza Mohammadi Shirkolaei, "High Gain and Wideband Multi-Stack Multilayer Anisotropic Dielectric Antenna," Progress In Electromagnetics Research Letters, Vol. 99, 103-109, 2021.
doi:10.2528/PIERL21062307
http://www.jpier.org/PIERL/pier.php?paper=21062307

References


    1. Long, S. A., M. W. McAllister, and L. C. Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 406-412, May 1983.
    doi:10.1109/TAP.1983.1143080

    2. Das, S. and S. Sahu, "Polarization recon gurability enabled metamaterial inspired dielectric resonator based Fabry-Perot resonator cavity antenna with high gain and bandwidth," Int. J. RF Microw. Comput. Aided Eng., e22603, 2021, https://doi.org/10.1002/mmc.22603.

    3. Mahmud, M. Z., M. Samsuzzaman, L. C. Paul, M. R. Islam, A. A. Althuwayb, and M. T. Islam, "A dielectric resonator based line stripe miniaturized ultra-wideband antenna for fth-generation applications," Int. J. Commun. Syst., Vol. 34, e4740, 2021, https://doi.org/10.1002/dac.4740.

    4. Ballav, S., A. Chatterjee, and S. K. Parui, "Gain augmentation of a dual-band dielectric resonator antenna with frequency selective surface superstrate," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, e22575, 2021, https://doi.org/10.1002/mmce.22575.

    5. Sun, W.-J., W.-W. Yang, P. Chu, and J.-X. Chen, "A wideband stacked dielectric resonator antenna for 5G applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, e21897, 2019, https://doi.org/10.1002/mmce.21897.
    doi:10.1002/mmce.21652

    6. Girjashankar, P. R. and T. Upadhyaya, "Substrate integrated waveguide fed dual band quad- elements rectangular dielectric resonator MIMO antenna for millimeter wave 5G wireless communication systems," AEU --- International Journal of Electronics and Communications, Vol. 137, 2021.

    7. Meher, P. R., B. R. Behera, S. K. Mishra, and A. A. Althuwayb, "A chronological review of circularly polarized dielectric resonator antenna: Design and developments," Int. J. RF Microw. Comput. Aided Eng., e22589, 2021, https://doi.org/10.1002/mmce.22589.

    8. Wang, L. and Y. En, "Broadband circularly polarized dielectric resonator antenna with L- shaped dielectric resonator strips," Int. J. RF Microw. Comput. Aided Eng., e22569, 2021, https://doi.org/10.1002/mmce.22569.

    9. Chakraborty, P., U. Banerjee, A. Saha, and A. Karmakar, "A compact ultra wideband dielectric resonator antenna with dual-band circular polarization characteristics," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, e22577, 2021, https://doi.org/10.1002/mmce.22577.

    10. Fakhte, S., H. Oraizi, R. Karimian, and R. Fakhte, "A new wideband circularly polarized stair- shaped dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1828-1832, Apr. 2015.
    doi:10.1109/TAP.2015.2392131

    11. Fakhte, S., H. Oraizi, and M. H. Vadjed-Samiei, "A high gain dielectric resonator loaded patch antenna," Progress In Electromagnetics Research C, Vol. 30, 147-158, 2012.
    doi:10.2528/PIERC12050813

    12. Denidni, T. A., Y. Coulibaly, and H. Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1043-1049, Apr. 2009.
    doi:10.1109/TAP.2009.2015809

    13. Petosa, A. and S. Thirakoune, "Rectangular dielectric resonator antennas with enhanced gain," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1385-1389, Apr. 2011.
    doi:10.1109/TAP.2011.2109690

    14. Nasmuddin and K. P. Esselle, "Antennas with dielectric resonators andsurface mounted short horns for high gain and large bandwidth," IET Proc. Microw., Antennas Propag., Vol. 1, No. 3, 723-729, Jun. 2007.
    doi:10.1049/iet-map:20060120

    15. Dutta, K., D. Guha, C. Kumar, and Y. M. M. Antar, "New approach in designing resonance cavity high-gain antenna using nontransparent conducting sheet as the superstrate," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2807-2813, Jun. 2015.
    doi:10.1109/TAP.2015.2415518

    16. Cicchetti, R., A. Faraone, E. Miozz, R. Ravanelli, and O. Testa, "A high-gain mushroom-shaped dielectric resonator antenna for wideband wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2848-2861, Jul. 2016.
    doi:10.1109/TAP.2016.2560920

    17. Gupta, P., D. Guha, and C. Kumar, "Dielectric resonator working as feed as well as antenna: New concept for dual-mode dual-band improved design," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1497-1502, 2016.
    doi:10.1109/TAP.2016.2521887

    18. Collin, R. E., "A simple arti cial anisotropic dielectric medium," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 206-209, Apr. 1958.
    doi:10.1109/TMTT.1958.1124539

    19. Yarga, S., K. Sertel, and J. L. Volakis, "Multilayer dielectric resonator antenna operating at degenerate band edge modes," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 287-290, 2009.
    doi:10.1109/LAWP.2009.2015688

    20. Fakhte, S. and H. Oraizi, "Analysis and design of rectangular uniaxial and biaxial anisotropic dielectric resonator antennas," Progress In Electromagnetics Research C, Vol. 62, 43-50, 2016.
    doi:10.2528/PIERC15122803

    21. Qiu, C.-W., L. Hu, X. Xu, and Y. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Physical Review E, Vol. 79, No. 4, 2009.
    doi:10.1103/PhysRevE.79.047602

    22. Qiu, C., L. Hu, B. Zhang, B.-I. Wu, S. G. Johnson, and J. D. Giannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, No. 16, 13467, 2009.
    doi:10.1364/OE.17.013467

    23. Fakhte, S., H. Oraizi, and L. Matekovits, "Cylindrical uniaxial anisotropic resonator antenna with improved gain," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1404-1409, 2017.
    doi:10.1109/TAP.2016.2647689

    24. Gharsallah, H., L. Osman, and L. Latrach, "A novel cylindrical DRA for C-band applications," International Journal of Advanced Computer Science and Applications, Vol. 7, No. 8, 2016.
    doi:10.14569/IJACSA.2016.070804

    25. Sharma, A., A. Sarkar, A. Biswas, and M. J. Akhtar, "A-shaped wideband dielectric resonator antenna for wireless communication systems and its MIMO implementation," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, e21402, 2018.
    doi:10.1002/mmce.21402

    26. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband Minkowski fractal dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2895-2903, 2012.
    doi:10.1109/TAP.2013.2251596