Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-08-16

Cost-Effective Surface-Mount Patch Antenna with Ring Slot Using Ball Grid Array Packaging for 5G Millimeter-Wave Applications

By Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu
Progress In Electromagnetics Research Letters, Vol. 99, 127-133, 2021
doi:10.2528/PIERL21070103

Abstract

The letter presents a compact, cost-effective, and surface-mount patch antenna element for 5G millimeter-wave (mmWave) system integration. The antenna element adopts ball grid array (BGA) packaging technology to achieve surface mount function, which can be applied to highly integrated systems. By adding a ring slot on the radiating patch, the proposed antenna obtains a wider impedance bandwidth. The antenna prototype has been simulated, manufactured, and verified. The proposed antenna element size is 5 mm × 5 mm × 1.3 mm. The measurement results show that the proposed antenna element can be used in the N257 (26.5 to 29.5 GHz) and N261 (27.5-28.35 GHz) frequency bands.

Citation


Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Cost-Effective Surface-Mount Patch Antenna with Ring Slot Using Ball Grid Array Packaging for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 99, 127-133, 2021.
doi:10.2528/PIERL21070103
http://www.jpier.org/PIERL/pier.php?paper=21070103

References


    1. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981, doi: 10/dqgrtb.
    doi:10.1109/TAP.1981.1142523

    2. Nasimuddin, X. Qing, and Z. N. Chen, "A wideband circularly polarized stacked slotted microstrip patch antenna," IEEE Antennas Propag. Mag., Vol. 55, No. 6, 84-99, Dec. 2013, doi: 10/gjwzx6.
    doi:10.1109/MAP.2013.6781708

    3. Telsang, T. M. and A. B. Kakade, "Ultrawideband slotted semicircular patch antenna," Microw. Opt. Technol. Lett., Vol. 56, No. 2, 362-369, 2014, doi: 10/gj39ft.
    doi:10.1002/mop.28102

    4. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 9-12, 2008, doi: 10/d828rq.
    doi:10.1109/LAWP.2007.914122

    5. Deshmukh, A. A. and K. P. Ray, "Compact broadband slotted rectangular microstrip antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 1410-1413, 2009, doi: 10/ck8zkg.
    doi:10.1109/LAWP.2010.2040061

    6. Chair, R., C.-L. Mak, K.-F. Lee, K.-M. Luk, and A. A. Kishk, "Miniature wide-band half U-slot and half E-shaped patch antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2645-2652, Aug. 2005, doi: 10/cwf8p8.
    doi:10.1109/TAP.2005.851852

    7. Mitha, T. and M. Pour, "Conformal wideband microstrip patch antennas on cylindrical platforms," Progress In Electromagnetics Research Letters, Vol. 80, 1-6, 2018.
    doi:10.2528/PIERL18100906

    8. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019, doi: 10.1109/JPROC.2019.2933267.
    doi:10.1109/JPROC.2019.2933267

    9. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017, doi: 10.1109/TAP.2017.2722873.
    doi:10.1109/TAP.2017.2722873

    10. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized end re planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020, doi: 10/ghcvvw.
    doi:10.1109/TAP.2019.2930100

    11. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array antenna-in-package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019, doi: 10.1109/LAWP.2019.2938229.
    doi:10.1109/LAWP.2019.2938229

    12. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002, doi: 10.1049/el:20020144.
    doi:10.1049/el:20020144

    13. Zhang, Y. P., "Integrated circuit ceramic ball grid array package antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 2538-2544, Oct. 2004, doi: 10.1109/TAP.2004.834427.
    doi:10.1109/TAP.2004.834427

    14. Sun, M., Y. P. Zhang, Y. X. Guo, K. M. Chua, and L. L. Wai, "Integration of grid array antenna in chip package for highly integrated 60-GHz radios," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 1364-1366, 2009, doi: 10.1109/LAWP.2009.2039031.
    doi:10.1109/LAWP.2009.2039031

    15. SalarRahimi, M., et al., "A cost-efficient 28 GHz integrated antenna array with full impedance matrix characterization for 5G NR," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 4, 666-670, Apr. 2020, doi: 10/ghh7w4.
    doi:10.1109/LAWP.2020.2976188

    16. Lima de Paula, I., et al., "Cost-effective high-performance air- lled siw antenna array for the global 5G 26 GHz and 28 GHz bands," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 2, 194-198, Feb. 2021, doi: 10/gjxczb.
    doi:10.1109/LAWP.2020.3044114

    17. Kim, G. and S. Kim, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, 2021, doi: 10/gjxzh2.
    doi:10.1109/ACCESS.2021.3075495

    18. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface-mount PIFA using ball grid array packaging for 5G mmWave," Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021.
    doi:10.2528/PIERL21050203

    19. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface mounted microstrip antenna using ball grid array packaging for mmWave systems integration," Progress In Electromagnetics Research Letters, Vol. 98, 105-111, 2021.
    doi:10.2528/PIERL21051207