Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-08-17

Miniature Bowtie Antenna Elements and Arrays Based on Ball Grid Array Packaging for 5G Millimeter-Wave Applications

By Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu
Progress In Electromagnetics Research Letters, Vol. 99, 143-151, 2021
doi:10.2528/PIERL21072102

Abstract

This letter proposes a miniature bow-tie antenna element and its 2 × 2 arrays based on ball grid array (BGA) packaging technology for 5G millimeter-wave new radio (NR) applications. The antenna substrate uses ultra-economical single-layer FR4 printed circuit boards (PCB) to reduce manufacturing costs. By adopting solder balls, the antenna achieves the BGA packaging and realizes the surface mounting function. One bow-tie patch is excited by a plated through-hole (PTH) connected to the feeding point. The other bow-tie patch is directly short connected to the ground plane by another PTH. Besides, the bottom ground plane can be equivalent to a reflector, allowing the antenna element and array to obtain broadside radiation. For ease of integration, the input impedance of the antenna is set to 50 Ω. The measurement results show that the -10 dB bandwidth of the antenna element is 21% covering 25.2 to 31.1 GHz. The measured peak gains of the antenna element and the 2 × 2 arrays are 7.6 and 10.75 dBi, respectively. The proposed antenna element and array cover N257 (26.5-29.5 GHz) and N261 (27.5-28.35 GHz) bands. It is very suitable for the 5G millimeter-wave application.

Citation


Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Miniature Bowtie Antenna Elements and Arrays Based on Ball Grid Array Packaging for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 99, 143-151, 2021.
doi:10.2528/PIERL21072102
http://www.jpier.org/PIERL/pier.php?paper=21072102

References


    1. Andrews, J. G, What will 5G be, Vol. 32, No. 6, 1065-1082, IEEE J. Sel. Areas Commun., Jun. 2014.

    2. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
    doi:10.1109/MCOM.2014.6736750

    3. Qu, S., J. Li, Q. Xue, and C. H. Chan, "Wideband cavity-backed bowtie antenna with pattern improvement," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3850-3854, Dec. 2008.
    doi:10.1109/TAP.2008.2007395

    4. Qu, S., K. B. Ng, and C. H. Chan, "Waveguide fed broadband millimeter wave short back re antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1697-1703, Apr. 2013.
    doi:10.1109/TAP.2012.2232267

    5. Zhang, Y., "Antenna-in-Package technology: Its early development [Historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
    doi:10.1109/MAP.2019.2907916

    6. Zhang, Y., J. Mao, and , "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
    doi:10.1109/JPROC.2019.2933267

    7. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized end re planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020.
    doi:10.1109/TAP.2019.2930100

    8. Ali, M., et al., "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 9, 1515-1523, Sep. 2020.
    doi:10.1109/TCPMT.2020.3013725

    9. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array Antenna-in-Package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019.
    doi:10.1109/LAWP.2019.2938229

    10. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-Package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag.,, Vol. 65, No. 12, 6372-6379, Dec. 2017.
    doi:10.1109/TAP.2017.2722873

    11. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface-mount PIFA using ball grid array packaging for 5G mmWave," Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021.
    doi:10.2528/PIERL21050203

    12. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface mounted microstrip antenna using ball grid array packaging for mmWave systems integration," Progress In Electromagnetics Research Letters, Vol. 98, 105-111, 2021.
    doi:10.2528/PIERL21051207

    13. Lima de Paula, I., et al., "Cost-effective high-performance air- lled SIW antenna array for the global 5G 26 GHz and 28 GHz Bands," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 2, 194-198, Feb. 2021.
    doi:10.1109/LAWP.2020.3044114