Vol. 101
Latest Volume
All Volumes
PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-11-30
Dipole Antenna Design for Portable Devices Operating in the 5G NR Frequency Bands
By
Progress In Electromagnetics Research Letters, Vol. 101, 43-48, 2021
Abstract
In this paper, a dipole antenna is investigated for 5G New Radio portable devices. This antenna adopts the characteristics of multiple mode resonance. Then, by adjusting the spacing between dipole pairs, the antenna has a good impedance match in a wide frequency band. The -10 dB impedance bandwidth of the antenna is 2.31-5.34 GHz (79.2%). In the operation frequency band, the maximum gain and average gain of the antenna are 8.68 dBi and 4.67 dBi, respectively. It can be used in the 5G Sub-6 GHz NR frequency bands n7/n38/n41/n77/n78/n79 and also compatible with WLAN/WiMAX band.
Citation
Yongwei Li Quanyuan Feng Liguo Zhou , "Dipole Antenna Design for Portable Devices Operating in the 5G NR Frequency Bands," Progress In Electromagnetics Research Letters, Vol. 101, 43-48, 2021.
doi:10.2528/PIERL21090401
http://www.jpier.org/PIERL/pier.php?paper=21090401
References

1. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Commun. Surv. Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
doi:10.1109/COMST.2016.2532458

2., "3GPP specification series: 38 series,", 2020, [Online]. Available: https://www.3gpp.org/DynaReport/38-series.htm.
doi:10.1109/COMST.2016.2532458

3. Jin, G., C. Deng, Y. Xu, J. Yang, and S. Liao, "Differential frequency-reconfigurable antenna based on dipoles for sub-6 GHz 5G and WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 3, 472-476, 2020.
doi:10.1109/LAWP.2020.2966861

4. Zeng, J. and K. M. Luk, "Single-layered broadband magnetoelectric dipole antenna for new 5G application," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 5, 911-915, 2019.
doi:10.1109/LAWP.2019.2905768

5. Sim, C. Y. D., H. Y. Liu, and C. J. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 1, 74-78, 2020.
doi:10.1109/LAWP.2019.2953334

6. Tefiku, F. and E. Yamashita, "Double-sided printed strip antenna for dual frequency operation," IEEE Antennas Propag. Soc. AP-S Int. Symp., Vol. 1, 50-53, 1996.

7. Tefiku, F. and C. A. Grimes, "Design of broad-band and dual-band antennas comprised of series-fed printed-strip dipole pairs," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 895-900, 2000.
doi:10.1109/8.865221

8. Quan, X., R. Li, Y. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 547-550, 2012.
doi:10.1109/LAWP.2012.2199458

9. Li, R. L., X. L. Quan, Y. H. Cui, and M. M. Tentzeris, "Directional triple-band planar antenna for WLAN/WiMax access points," Electron. Lett., Vol. 48, No. 6, 305-306, 2012.
doi:10.1049/el.2011.3448

10. Tao, J. and Q. Feng, "Dual-band magnetoelectric dipole antenna with dual-sense circularly polarized character," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5677-5685, Nov. 2017.
doi:10.1109/TAP.2017.2748282

11. Tao, J., Q. Feng, and T. Liu, "Dual-wideband magnetoelectric dipole antenna with director loaded," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 10, 1885-1889, 2018.
doi:10.1109/LAWP.2018.2869034

12. Tao, J., Q. Feng, G. A. E. Vandenbosch, and V. Volskiy, "Director-loaded magneto-electric dipole antenna with wideband at gain," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 6761-6769, 2019.
doi:10.1109/TAP.2019.2925200

13. Guo, Y. Q., Y. M. Pan, and S. Y. Zheng, "Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7017-7026, 2020.
doi:10.1109/TAP.2020.3008668