Vol. 101
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-20
A Polarization Insensitive Tri-Band Bandpass Frequency Selective Surface for Wi-MAX and WLAN Applications
By
Progress In Electromagnetics Research Letters, Vol. 101, 127-136, 2021
Abstract
This article reports a single layer tri-band bandpass, polarization insensitive Frequency Selective Surface (FSS). The unit cell is designed by considering different square loop elements and cross dipole element to pass Wi-Max and WLAN frequency range with low loss. Three different shapes of loops and one cross dipole are arranged in a way that gives a triple-band-pass characteristic from the proposed structure. These loops and dipole are designed to pass Wi-MAX (2.5-2.7 GHz, 3.4-3.6 GHz) and WLAN (center frequency, 5.5 GHz) bands. The structure performance is independent of incidence angle of wave due to its symmetrical geometry which makes the design polarization insensitive and achieves good angular stability. A 14x14 array of proposed unit cell is realized and measured. The proposed FSS achieves a 3 dB transmission bandwidth of 25% at 2.6 GHz, 65.6% at 3.5 GHz and 65.6% at 5.5 GHz. The advantage of the proposed design is that it has a simple and compact geometry fabricated on a low-cost substrate and achieved tri-band band pass response with a wide angular stability.
Citation
Sanjeev Yadav Mahendra Mohan Sharma Rajesh Singh , "A Polarization Insensitive Tri-Band Bandpass Frequency Selective Surface for Wi-MAX and WLAN Applications," Progress In Electromagnetics Research Letters, Vol. 101, 127-136, 2021.
doi:10.2528/PIERL21091101
http://www.jpier.org/PIERL/pier.php?paper=21091101
References

1. Kushwaha, N., R. Kumar, R. Ram Krishna, and T. Oli, "Design and analysis of new compact UWB frequency selective surface and its equivalent circuit," Progress In Electromagnetic Research C, Vol. 46, 31-39, 2014.
doi:10.2528/PIERC13100908

2. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
doi:10.1002/0471723770

3. Wu, T. K., Frequency Selective Surface and Grid Array, A Wiley Interscience Publication, 1995.

4. Zhou, H., S. Qu, Z. Xu, J. Wang, H. Ma, W. Peng, B. Lin, and P. Bai, "A triband second-order frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 507-509, 2011, doi: 10.1109/LAWP.2011.2157074.
doi:10.1109/LAWP.2011.2157074

5. Yadav, S., C. P. Jain, and M. M. Sharma, "Polarization independent dual-bandpass frequency selective surface for Wi-Max applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 6, e21278, August 2018, doi.org/10.1002/mmce.21278.

6. Mahaveer, U., K. T. Chandrasekaran, M. P. Mohan, A. Alphones, M. Y. Siyal, and M. F. Karim, "A tri-band frequency-selective surface," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 7, 861-873, 2021, doi: 10.1080/09205071.2020.1865206.
doi:10.1080/09205071.2020.1865206

7. Chen, H.-Y. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements," Microw. Opt. Technol. Lett., Vol. 53, No. 7, 1547-1553, 2011, doi: 10.1002/mop.26066.
doi:10.1002/mop.26066

8. Ditti, S. K. and S. Das, "On a polarization-independent frequency-selective surface (FSS)," Microw. Opt. Technol. Lett., Vol. 44, 249-250, 2005, doi: 10.1002/mop.20601.
doi:10.1002/mop.20601

9. Ramaccia, D., A. Toscano, A. Colasante, G. Bellaveglia, and R. Lo Forti, "Inductive tri-band double element FSS for space applications," Progress In Electromagnetics Research C, Vol. 18, 87-101, 2011.
doi:10.2528/PIERC10100503

10. Sivasamy, R. and M. Kanagasabai, "A novel dual-band angular independent FSS with closely spaced frequency response," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 5, 298-300, 2015, doi: 10.1109/LMWC.2015.2410591.
doi:10.1109/LMWC.2015.2410591

11. Lu, Z. H., P. G. Liu, and X. J. Huang, "A novel three-dimensional frequency selective structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 588-591, 2012, doi: 10.1109/LAWP.2012.2201438.

12. Qing, A. and C. K. Lee, Differential Evolution in Electromagnetic, Springer-Verlag, Heidelberg, Berlin, 2010.
doi:10.1007/978-3-642-12869-1

13. Islam, S., J. Stiens, G. Poesen, I. Jaeger, W. De Raedt, and R. Vounckx, "Heuristic approach of finite grounded frequency selective surface arrays characterization in W-band," Proceedings Symposium IEEE/LEOS Benelux Chapter, Twente, 2008.

14. Narayan, S., B. Sangeetha, and R. M. Jha, Frequency Selective Surfaces Based High Performance Microstrip Antenna, Springer, Singapore, 2016.
doi:10.1007/978-981-287-775-8

15. Yadav, S., C. P. Jain, and M. M. Sharma, "Smartphone frequency shielding with penta-bandstop FSS for security and electromagnetic health applications," IEEE Transactions on Electromagnetic Compatibility,, Vol. 61, No. 3, 887-892, June 2019, doi: 10.1109/TEMC.2018.2839707.
doi:10.1109/TEMC.2018.2839707

16. Ibrahimi, A., S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, "Second-order tetrahertz band pass frequency selective surface with miniaturized elements," IEEE Transaction on Tetrahertz Science and Technology, Vol. 5, 2015, doi: 10.1109/TTHZ.2015.2452813.

17. Yadav, S., B. Peswani, R. Choudhury, and M. M. Sharma, "Miniaturized band pass double-layered frequency selective superstrate for Wi-Max applications," 2014 IEEE Symposium on Wireless Technology and Applications (ISWTA), 182-187, 2014, doi: 10.1109/ISWTA.2014.6981183.
doi:10.1109/ISWTA.2014.6981183

18. Katoch, K., N. Jaglan, and S. D. Gupta, "Design of a triple band notched compact FSS at UWB. frequency range," Progress In Electromagnetic Research M, Vol. 87, 147-157, 2019.
doi:10.2528/PIERM19091103

19. Lee, I.-G., Y. B. Park, H.-J. Chun, Y.-J. Kim, and I.-P. Hong, "Design of active frequency selective surface with curved composite structures and tunable frequency response," International Journal of Antennas and Propagation, Vol. 2017, Article ID 6307528, 1-10, doi: 10.1155/2017/6307528.

20. Huang, C., C. Ji, X.Wu, J. Song, and X. Luo, "Combining FSS and EBG surfaces for high-efficiency transmission and low-scattering properties," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1628-1632, March 2018, doi: 10.1109/TAP.2018.2790430.
doi:10.1109/TAP.2018.2790430

21. Annam, K., S. Kumar Khah, S. Dooley, C. Cerny, and G. Subramanyam, "Experimental design of bandstop filters based on unconventional defected ground structures," Microw. Opt. Technol. Lett., Vol. 58, 2969-2973, 2016, doi: 10.1002/mop.30192.
doi:10.1002/mop.30192