Vol. 101
Latest Volume
All Volumes
PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-29
Spur Line Implanted Orthogonal Microstrip-Fed Ultra Wideband MIMO Linear Taper Slot Antenna with WLAN Band Rejection
By
Progress In Electromagnetics Research Letters, Vol. 101, 11-17, 2021
Abstract
A compact ultra-wideband Multiple-Input-Multiple Output (MIMO) orthogonal microstrip fed linear tapered slot antenna (LTSA) is planned for frequency notched applications. The projected MIMO antenna comprises of two indistinguishable linear tapered slot antennas excited by two orthogonal microstrip feeds. In this paper, double split-ring resonators (DSRRs) are suggested to develop the isolation between two linear tapered slot antenna elements. A quarter wavelength spur line is entrenched on the feeding part of the micro-strip antenna to attain the notch frequency. The L-shaped spur line adds to the notch frequency at 5.5 GHz targeted to dodge interference from 5-6 GHz WLAN band. The planned antenna is fabricated and labelled in terms of impedance and radiation parameter measurements, compliant with that of properties achieved from full wave simulation. The antenna has congruous gain and well-built radiation pattern. Radiation pattern portrayal confirms high gain in the end-fire direction.
Citation
Chittajit Sarkar Susobhan Ray , "Spur Line Implanted Orthogonal Microstrip-Fed Ultra Wideband MIMO Linear Taper Slot Antenna with WLAN Band Rejection," Progress In Electromagnetics Research Letters, Vol. 101, 11-17, 2021.
doi:10.2528/PIERL21091102
http://www.jpier.org/PIERL/pier.php?paper=21091102
References

1. Federal Communications Commission (FCC), "First report and order in the matter of revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems,", ET-Docket 98-153, Washington, DC, 2002.
doi:10.1109/TAP.2018.2790176

2. Siddiqui, J. Y., C. Saha, C. Sarkar, L. A. Shaik, and Y. M. M. Antar, "Ultra-wideband antipodal tapered slot antenna with integrated frequency notch characteristics," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1534-1539, March 2018.
doi:10.1049/iet-map.2018.0051

3. Sarkar, C., J. Y. Siddiqui, L. A. Shaik, C. Saha, and Y. M. M. Antar, "Frequency notched balanced antipodal tapered slot antenna with very low cross-polarized radiation," IET Microwaves, Antennas & Propagation, Vol. 12, No. 11, 1859-1863, 2018.

4. Sarkar, C., C. Saha, L. A. Shaik, J. Y. Siddiqui, and Y. M. M. Antar, "Spur line integrated single/dual/triple notched ultra wideband monopole antenna," International Journal of RF and Microwave Computer Aided Engineering, doi: 10.1002/mmce.21995, 2019.
doi:10.1109/LAWP.2014.2340395

5. Liu, X. L., et al., "A compact ultrawideband MIMO antenna using QSCA for high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1497-1500, 2014..
doi:10.1109/LAWP.2009.2037027

6. Zhang, S., et al., "Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1279-1282, 2009.
doi:10.2528/PIERM18033104

7. Nirmal, P. C., A. Nandgaonkar, S. L. Nalbalwar, and R. K. Gupta, "A compact dual band MIMO antenna with improved isolation for Wi-MAX and WLAN applications," Progress In Electromagnetics Research M, Vol. 68, 69-77, 2018.

8. Naidu, R. T., C. Saha, V. K. Krishna, L. Ahmed Shaik, J. Y. Siddiqui, and Y. M. M. Antar, "Compact multiple EBG cells loaded UWB-narrowband antenna pair with high isolation for cognitive radio (CR) based MIMO applications," AEU Int. Journal of Electronics and Communications, Vol. 27, 153420, ISSN 1434-841, August 2020.
doi:10.1109/LAWP.2015.2435992

9. Zhang, S. and G. F. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.

10. Yang, X., Y. Liu, Y.-X. Xu, and S.-X. Gong, "Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot," IEEE AWPL, Vol. 16, No. 99, 2175-2178, 2017.
doi:10.2528/PIERL18070303

11. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "A 28-GHz antenna for 5G MIMO applications," Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018.
doi:10.1109/LAWP.2017.2717404

12. Farahani, M., J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization- rotator wall," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2324-2327, 2017.
doi:10.1109/LAWP.2015.2437713

13. Deng, J. Y., L. X.Guo, and X. L. Liu, "An ultrawide band MIMO antenna with a high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 182-185, 2016.

14. Boddapati, T. P. M., Y. U. Devi, and T. Anilkumar, "Defected ground structured compact MIMO antenna with low mutual coupling for automotive communications," Microwave and Optical Lett., Vol. 61, No. 3, 1-7, 2018.
doi:10.1109/TAP.2015.2398455

15. Roshna, T. K., U. Deepak, V. R. Sajitha, K. Vasudevan, and P. Mohanan, "A compact UWB MIMO antenna with re ector to enhance isolation," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1873-1877, 2015.

16. Chen, W.-S. and R.-D. Lin, "Three-port MIMO antennas for laptop computers using an isolation element as a radiator," International Journal of RF and Microwave Computer-Aided Engineering, doi: 10.1002/mmce.22326, 2020.
doi:10.1007/s10470-021-01923-x

17. Tiwari, R. N., P. Singh, S. Pandey, R. Anand, D. K. Singh, and B. K. Kanaujia, "Swastika shaped slot embedded two port dual frequency band MIMO antenna for wireless applications," Analog Integrated Circuits and Signal Processing, Vol. 109, No. 1, 103-113, October 2021.

18. Tiwari, R. N., P. Singh, B. K. Kanaujia, and P. Kumar, "Compact circularly polarized MIMO printed antenna with novel ground structure for wideband applications," International Journal of RF and Microwave Computer Aided Engineering, Vol. 31, No. 8, e22737, August 2021.
doi:10.1080/09205071.2020.1716859

19. Tiwari, R. N., P. Singh, B. K. Kanaujia, P. Kumar, and S. K. Gupta, "A low profile dual band MIMO antenna for LTE/Bluetooth/Wi-Fi/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1239-1253, January 2020.

20. Tiwaria, R. N., P. Singh, B. K. Kanaujia, and K. Srivastava, "Neutralization technique based two and four port high isolation MIMO antennas for UWB communication," AEU-International Journal of Electronics and Communications, Vol. 110, Article 152828, July 2019.

21. Bahl, I. and P. Bhartia, Microwave Solid State Circuit Design, Ch. 2, Wiley, Hoboken, NJ, USA, 1998.

22., , High Frequency Simulation Software, Ansoft corp. v.14.

23. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, Norwood, MA, USA, 2014.