Vol. 102
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-25
Bandpass Frequency Selective Surface with Sharp Sidebands for 5G Electromagnetic Shielding of Fixed Satellite System in C-Band
By
Progress In Electromagnetics Research Letters, Vol. 102, 1-8, 2022
Abstract
In this letter, a new bandpass frequency selective surface (FSS) with sharp sidebands is proposed to suppress electromagnetic interferences caused by the fifth generation (5G) mobile communication to fixed C-band satellite system. The proposed design is composed of three cascaded layers separated by air space, whose unit cell geometry comprises metal square loops, square slots and their evolvement. As the overall configuration yields high-order bandpass characteristics with multiple transmission poles and zeros, a flat passband covering 3.7-4.2 GHz is obtained, while the out-of-band shielding effectiveness mostly remains better than 20 dB over frequency lower than 6.5 GHz. Good angular stability and polarization independency are also achieved due to structural symmetry. A prototype was fabricated and measured, whose results agree well with the full-wave simulation.
Citation
Min Tang, Qi-Kun Liu, Dong-Fang Zhou, Chen-Qing Pan, and Zhen-Ning Yao, "Bandpass Frequency Selective Surface with Sharp Sidebands for 5G Electromagnetic Shielding of Fixed Satellite System in C-Band," Progress In Electromagnetics Research Letters, Vol. 102, 1-8, 2022.
doi:10.2528/PIERL21102005
References

1. 38104-f00, , , [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/38series/38.104/.

2. Guidolin, F. and M. Nekovee, "Investigating spectrum sharing between 5G millimeter wave networks and fixed satellite systems," IEEE Globecom Workshops (GC Wkshps), 1-7, 2015.

3. Qu, M., Y. F. Feng, and J. Su, S. M. A. Shah, "Investigating spectrum sharing between 5G millimeter wave networks and fixed satellite systems," IEEE Globecom Workshops (GC Wkshps), 1-7, 2015.

4. Zhang, J. H., L. P. Yan, R. Gao, C. G. Wang, and X. Zhao, "A novel 3D ultra-wide stopband frequency selective surface for 5G electromagnetic shielding," 2020 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-4, 2020.

5. Yew, C. E., C. Y. Choon, M. Y. Alias, and L. S.Wei, "Fixed satellite service and broadband wireless access interference analysis in the extended C-band," 2011 IFIP Wireless Days (WD), 1-3, 2011.
doi:10.1109/TEMC.2016.2634279

6. Li, D., T. W. Li, R. Hao, H. S. Chen, W. Y. Yin, H. C. Yu, and E. P. Li, "A low-profile broadband bandpass frequency selective surface with two rapid band edges for 5G near-field applications," IEEE Trans. Electromagnetic Compatibility, Vol. 59, No. 2, 670-676, 2017.
doi:10.1109/TMTT.2019.2905196

7. Krushna, K. V. and S. Raghavan, "EM design and analysis of frequency selective surface based on substrate-integrated waveguide technology for airborne radome application," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 5, 1727-1739, 2019.
doi:10.1049/iet-map.2019.0377

8. Krushna, K. V. and S. Raghavan, "Design of SIW cavity models to control the bandwidth of frequency selective surface," IET Microw. Antennas Propag., Vol. 13, No. 14, 2515-2524, 2019.
doi:10.1109/TAP.2016.2634281

9. Yang, L. L., X. C. Wei, D. Yi, and J. M. Jin, "A bandpass frequency selective surface with a low cross-polarization based on cavities with a hybrid boundary," IEEE Trans. Antennas Prppag., Vol. 65, No. 2, 654-661, 2017.

10. Li, B. and Z. X. Shen, "Three-dimensional bandpass frequency-selective structures with multiple transmission zeros," IEEE Trans. Antennas Prppag., Vol. 61, No. 10, 3578-3589, 2013.
doi:10.1109/TAP.2013.2250237

11. Li, B. and Z. X. Shen, "Synthesis of quasi-elliptic bandpass frequency-selective surface using cascaded loop arrays," IEEE Trans. Antennas Prppag., Vol. 61, No. 6, 3053-3059, 2013.
doi:10.1109/TAP.2018.2794386

12. Zhu, J. P., W. C. Tang, C. Wang, C. Huang, and Y. R. Shi, "Dual-polarized bandpass frequency-selective surface with quasi-elliptic response based on square coaxial waveguide," IEEE Trans. Antennas Prppag., Vol. 66, No. 3, 1331-1339, 2018.
doi:10.1109/MAP.2014.6867682

13. Rashid, A. K., B. Li, and Z. X. Shen, "An overview of three-dimensional frequency-selective structures," IEEE Antennas Propag. Magazine, Vol. 56, No. 3, 43-67, 2014.
doi:10.1109/TAP.2020.3026863

14. Xie, J. M., B. Li, Y. P. Lyu, and L. Zhu, "Single- and dual-band high-order bandpass frequency selective surfaces based on aperture-coupled dual-mode patch resonators," IEEE Trans. Antennas Prppag., Vol. 69, No. 4, 2130-2141, 2021.
doi:10.1109/TMTT.2016.2557325

15. Wang, D. S., P. Zhao, and C. H. Chan, "Design and analysis of a high-selectivity frequency-selective surface at 60 GHz," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 6, 1694-1703, 2016.
doi:10.1109/LAWP.2020.3041761

16. Ye, H., W. T. Dai, X. Chen, H. Zhang, S. W. Bie, and J. J. Jiang, "High-selectivity frequency-selective rasorber based on low-profile bandpass filter," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 2, 150-154, 2021.