Vol. 102
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-19
Near-Field Measurement System Based on a Software Defined Radio
By
Progress In Electromagnetics Research Letters, Vol. 102, 87-94, 2022
Abstract
This article reports an SDR (software-defined radio) operating as a receiver for near-field measurement, aiming at EMC pre-compliance tests. The SDR replaces professional-grade RF instrumentation with benefits, with the lower costs. Its software application is based on Open-source GNU-Radio, which grants a higher versatility to the signal processing and visualization, requiring a single laptop to analyze the data and control the whole system, in real time. Reported tests used two commercial PCB magnetic field probes, and a proof-of-concept near-field imaging is performed in an S-shaped transmission line at 1100 MHz.
Citation
Marcelo Bender Perotoni, Leandro A. Silva, Walter Silva, and Kenedy M. G. Santos, "Near-Field Measurement System Based on a Software Defined Radio," Progress In Electromagnetics Research Letters, Vol. 102, 87-94, 2022.
doi:10.2528/PIERL21111106
References

1. Videnka, R. and J. Svacina, "Introduction to EMC pre-compliance testing," MIKON 2008 | 17th International Conference on Microwaves, Radar and Wireless Communications, 1-4, 2008.

2. Schneider, D., S. Tenbohlen, and W. Kohler, "Pre-compliance test method for radiated emissions of automotive components using scattering parameter transfer functions," International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, 2012.
doi:10.1049/SBEW042E

3. Bienkowski, P. and H. Trzaska, Electromagnetic Measurements in the Near-field, Scitech, Raleigh, 2012.
doi:10.1109/ISEMC.2004.1349987

4. Baudry, D., F. Bicrel, L. Bouchelouk, A. Louis, B. Mazari, and P. Eudeline, "Near-field techniques for detecting EMI sources," 2004 International Symposium on Electromagnetic Compatibility, 11-13, 2004.
doi:10.1002/047164465X

5. Montrose, M. I. and E. M. Nakauchi, Testing for EMC Compliance: Approaches and Techniques, IEEE Press, Piscataway, 2004.

6. Kuznetsov, Y., A. Baev, A. Gorbunova, M. Knovalyuk, D. Thomas, C. Smartt, M. H. Baharud- din, J. A. Russer, and P. Russer, "Localization of the equivalent sources on the PCB surface by using ultra-wideband time domain near-field measurements," International Symposium on Electro- magnetic Compatibility --- EMC EUROPE, 1-6, 2016.

7. Kuznetsov, Y., A. Baev, M. Konovalyuk, A. Gorbunova, M. Haider, J. A. Russer, and P. Russer, "Characterization of the cyclostationary emissions in the near-field of electronic device," International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 573-578, 2018.
doi:10.2528/PIERB20102103

8. Ramesan, R. and D. Madathil, "Modeling of radiation source using an equivalent dipole moment model," Progress In Electromagnetics Research B, Vol. 89, 157-175, 2020.

9. Foged, L. J., L. Scialacqua, F. Saccardi, F. Mioc, M. Sorensen, G. Vecchi, and J. L. A. Quijano, "Using measured fields as field sources in computational EMC," 37th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, 223-227, 2015.

10. Bechet, A. C., C. Helbet, I. Bouleanu, A. Sarbu, S. Miclaus, and P. Bechet, "Low cost solution based on software defined radio for the RF exposure assessment: A performance analysis," 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 1-6, 2019.

11. Sommer, D., A. S. C. R. Irigireddy, J. Parkhurst, and E. R. Nastrucci, "SDR- and UAV- based wireless avionics intra-communication testbed," AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), 1-5, 2020.

12. Del Barrio, A. A., J. P. Manzano, V. M. Maroto, A. Villarin, J. Pagan, M. Zapater, J. Ayala, and R. Hermida, "Hack-RF + GNU radio: A software-defined radio to teach communication theory," International Journal of Electrical Engineering & Education, 1-18, 2019.

13. Pacurar, O. T., C. Balint, C. Iftode, A. M. Silaghi, and A. D. Sabata, "Spectrum occupancy measurements in the Wi-Fi band with a PCB antenna," International Symposium on Electronics and Telecommunications (ISETC), 1-4, 2020.

14. Collins, T. F., R. Getz, D. Pu, and A. M. Wyglinski, "Software-defined Radio for Engineers," Artech House, 2018.
doi:10.2528/PIER05112501

15. Baudry, D., A. Louis, and B. Mazari, "Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications," Progress In Electromagnetics Research, Vol. 60, 311-333, 2006.

16. Sivaraman, N., F. Ndagljlmana, M. Kadi, and Z. Riah, "Broad band PCB probes for near field measurements," International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-5, 2017.
doi:10.3390/electronics10182201

17. Martinez, P. A., E. A. Navarro, J. Victoria, A. Suarez, J. Torres, A. Alcarria, J. Perez, A. Amaro, A. Menendez, and J. Soret, "Design and study of a wide-band printed circuit board near-field probe," Electronics, Vol. 10, No. 18, 1-19, 2021.
doi:10.1587/elex.7.460

18. Wu, I., S. Ishigami, K. Gotoh, and Y. Matsumoto, "Probe calibration by using a different type of probe as a reference in GTEM cell above 1 GHz," IEICE Electronics Express, Vol. 7, No. 6, 460-466, 2010.

19. Fano, W. G., R. Alonso, and L. M. Carducci, "Near field magnetic probe applied to switching power supply," 2016 IEEE Global Electromagnetic Compatibility Conference (GEMCCON), 1-4, November 2016.
doi:10.1017/S1759078720000690

20. Dimitrijevic, T., A. Atanaskovic, N. Doncov, D. Thomas, C. Smartt, and M. Baharuddin, "Calibration of the loop probe for the near-field measurement," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 9, 878-884, 2020.